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FINAL REPORT

A STUDY OF THE STABILITY OF REINFORCED CYLINDRICAL

AND CONICAL SHELLS SUBJECTED TO VARIOUS

TYPES AND COMBINATIONS OF LOADS

Introdnction

Preliminary theoretical and experimental studies of the strength

and stability of cylindrical and conical shells were performed by

the University of Alabama under the terms of Contract Number

DA-01-oog-ORD-33_ with the Redstone Arsenal and Contract Number

DA-01-O09-ORD-866 with the U.S. Army Ordnan@e District, Birmingham,

Alabama. As a result of these preliminary studies and discussions

with personnel of the Strength Analysis Branch of the Propulsion and

Vehicle Engineering Division at the George C. Marshall Space Flight

Center, a long range research program was formulated for the purpose

of providing analytical procedures, design data and digital computer

programs for the analysis and design of cylindrical and conical

shells that could be included in a space vehicle structures handbook.

The first research effort designed to achieve this purpose was accom-

plished under the terms of contract NAS 8-5012 between the George

C. Marshall Space Flight Center and the University of Alabama during

the period from May 28, 1962 to October 15, 1962. The results of

this initial effort under the terms of contract NAS 8-5012 were sub-

mitted to the GCMSFC as a University of Alabama Bureau of Engineering

Research Summary Report in four sections as follows: Section I -

"General Instability of An 0rthotropic Circular Cylindrical Shell
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Subjected to A Pressure Combined with An Axial Load Considering Both

Clamped and Simply Supported Edge Conditions" by Carl C. Steyer and

Thomas A. Carlton, Jr.; Section 2 - "Stress in A Segment of A Conical

Shell Subjected to Lateral Normal Load" by Chin Hao Chang; Section 3 -

"General Instability of An Orthotropic Circular Conical Shell Sub-

jected to Hydrostatic Pressure and A Compressive Axial Force" by

Carl C. Steyer and _ _ _ ....._h_-_heng Zien; and Section _ - 'matrix _a_

Lag Analysis Utilizing a High-Speed Digital Computer" by William K.

Rey. Abstracts of these four reports appeared in Volume 2, Number 2

issue of the Scientific and Technical Aerospace Reports as abstract

numbers N6_-I1335, N6_-I1336, N64-I1337 and N6_-I1332 respectively.

The initial effort of contract NAS 8-5012 was continued and

expanded under the terms of contract NAS 8-%168 which provided for

a twelve month effort beginning October 15, 1962. Modification

Number 2 extended the period, of performance through December 14, 1962

and Modification Number 3 extended the period of performance through

January i_, 1964.

A letter of appointment dated November 5, 1962 from Marion S.

Hardee, Contracting Officer, designated Mr. Norman C. Schlemmer and

Mr. James B. Sterett of the Propulsion and Vehicle Engineering

Division, Structures Branch, as his principal and alternate repre-

sentatives, respectively. Amendment Number i executed by James W.

Fletcher, Contracting Officer, and dated August 30, 1963 relieved Mr.

James B. Sterett of this responsibility and appointed Mr. Orville E.

Wheeler and Mr. Norman C. Schlemmer as the principal and alternate

representatives, respectively, of the Contracting Officer.
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Scope o__fWork

The work scope of contract NAS 8-5168 provided for a study of

the following seven items:

i. Completion of the theoretical studies in the evaluation and

application of Bodner's work to stiffened cylinders subjected to a

pressure, an axial load, or appropriate combinations of these loads

with an experimental verification of the results of these studies.

2o A theoretical and experimental study of a very thin ortho-

tropic cylinder that buckles in a diamond shaped pattern as a result

of being subjected to an axial load, a bending moment, a pressure,

a torque, or certain combinations of these loads.

3. The development and experimental verification of a linear

differential equation expressing the instability of a cylinder of a

type similar to the one developed by Bodner but which includes

additional non-linear or second order terms in the strain-displacement

relationships.

h. A theoretical and experimental study of a stiffened cylinder

or cone frustum subjected to a bending moment or a combination of a

bending moment and other loads.

5. The analysis of mathematical problems presented by the

strength and instability studies.

6. The theoretical analysis of a segment of a cone frustum

considering temperature distribution and other loads as specified by

the Government.

7. The experimental and theoretical study of the stress distri-

bution and shear lag for stiffened cylinders, cones or cone frustums.

I
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Personnel

Professional personnel of the University of Alabama participating

in the accomplishment of the work scope were Dr. T. A. Carlton, Jr.,

Dr. C. Ho Chang and Dr. C. C. Steyer of the Department of Engineering

Mechanics, Professor William K. Rey of the Depariment of Aerospace

Engineering and Mr. William S. Viall of the Research Institute. The

following students in the College of Engineering served as Graduate

Associates, Graduate Assistants or Student Technicians: Thomas D.

Easter, Thomas C. Evans, Raymond C. Montgomery, Colonel M. Pearson,

Charles Ho Ratcliff, Melvin K. Richardson, Jimmie L. Smith, Charles

R. Weeks and Tao Wu. Secretarial assistants and machinists of the

Bureau of Engineering Research, the Research Institute, the Depart-

ment of Aerospace Engineering and the Department of Engineering

Mechanics were utilized.

Summary of Results

I. The analytical study of the instability of circular cylin-

drical shells was continued. Equation 32 in Section i of the Sum-

mary Report for contract NAS 8-5012 was programmed and checked. The

Fortran II computer program for the solution of this equation was

previously submitted as Technical Report A for contract NAS 8-5168

and is included in this report as Appendix A. This program may be

used to predict the instability of a short orthotropic or stiffened

circular cylindrical shell subjected to a Combination of external

pressure and axial loads with either clamped or simply supported

edge conditions.
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II. A second study o£ the stability orthotropic circular

cylinders considered the case of a cylinder simultaneously subjected

to an axial load, an end moment and a uniform radial pressure. This

study was supported jointly by NASA_contract NAS 8-5168 and NASA

research grant NsG-381. The results of this study were previously

submitted as Report Number ii o£ the University of Alabama Research

Institute and are included in this report as Appendix E. Appendix

E contains both the Analysis and the Fortran II computer program°

III. The analytical study of the stability of orthotropic

circular conical shells was continued with the programming in For-

tran II language of the constants and coefficients that were pre-

sented in Section 3 of the Summary Report for contract NAS 8-5012.

This program was previously submitted as Technical Report B for

contract NAS 8-5168 and is included in this report as Appendix B.

IV. A second study of the stability of conical shells considered

the case of a segment of an isotropic truncated conical shell with

linearly varying thickness subjected to lateral normal loads. An

asymptotic general solution was obtained and previously submitted

as Technical Report C for contract NAS 8-5168. The results of this

analysis are contained within this report as Appendix C.

V. A survey of current literature was conducted to identify

publications containing information pertaining to the subject matter

of contract NAS 8-5168. The Scientific and Technical Aerospace

Reports issued by the Scientific and Technical Information Division

of NASA, the Technical Abstract Bulletin issued by the Defense

Documentation Center, the Applied Mechanics Reviews published by the
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American Institute of Aeronautics and Astronautics were scanned each

month for reports that appeared to contain information of value.

Copies were then obtained of those articles whose title indicated

they were related to work scope of contract NAS 8-5168. Abstracts

were then prepared of those publications that contained particularly

useful data or information. During the period of performance, copies

were obtained of 283 articles and abstracts were prepared of 39

articles. The list of publications and abstracts were previously

submitted as Technical Report D for contract NAS 8-5168 and are

contained within this report as Appendix D.

VI. The possibility of experimentally verifying some of the

analytical studies of the stability of cylindrical shells was con-

sidered. After a comprehensive review of available literature per-

taining to the fabrication and testing of plastic models, it became

apparent that no plastic material or fabrication procedure had been

widely adopted for model testing. Every procedure appears to contain

inherent faults for the study being contemplated. Essentially the

problem becomes that of selecting the procedure whose known faults

may be expected to have the least effect on the tests to be conducted.

Although no cylinders were actually made or tested, cellulose acetate

and vinyl were selected as the two materials that would be used in

preliminary studies. These two materials are available as sheet in

various sizes and thicknesses. This experimental program will be

continued under the_ terms of contract NAS 8-11155.

I
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VII. In Section 4 of the Summary Report for contract NAS 8-5012,

two analyses were presented for determining the stress distribution

in an sxially loaded, in_egrally stiffened panel. A number of other

analyses of this problem are available. In general, the differences

in the results obtained from the various analyses may be attributed

to the differences in the assumptions employed. In order to determine

the validity of the various analyses, an experimental program was

begun. This experimental program employs in_egrally stiffened

707_-T6_I aluminum alloy panels approximately eighteen inches wide

and twenty-four inches long. Four panels were prepared having a

ratio o£ stiffener area to stringer area varying from one-half to

tWO.

Preliminary testing of the £irstCpane{%l,PanellA_;_indicated that

poor machining had produced a panel that could not be effectively

utilized. However, the preliminary testing of Panel A did disclose

many problems in the instrumentation and certain undesirable charac-

teristics of the testing machine used to apply loads to the panels.

A considerable amount of riband effort was necessarily expended in

refining the instrumentation, correcting some of the deficiencies

in the testing machine and obtaining satisfactory end supports.

Preliminary testing of the second panel, Panel B, indicated that

all of the known problems had been corrected. Panel B was instru-

mented with a total of one hundred and forty strain gauge channels.

Two complete sets of data were obtained for each of four different

symmetrical loading conditions. Computer programs were written for

reducing the strain gauge data obtained from both the uniaxial and

rosette gauges utilizing the UNIVAC SS 80 computer.

!
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After reducing the data obtained from testing Panel B it became

apparent that the results were of no value for a number of reasons.

The results obtained from two supposedly identical tests for each

of the loading conditions did not agree in many important instances.

Secondly, although every precaution was taken to eliminate bending

of the panel, bending was present in some of the tests and an in-

sufficient number of strain gauge stations prevented a full evalu-

ation of the bending effect. Finally, some of the results exhibited

an unexplained non-linearity and apparent zero drift in certain

gauge channels° Therefore, the data obtained in the testing of

Panel B is not being submitted at this time pending a complete re-

evaluation of the testing procedure, instrumentation, and data

reduction methods.

The attempt to obtain satisfactory, reproducible experimental

data for Panel B, as well as for Panels C and D, will be continued

under the terms of contract NAS 8-Iii_. The experimental results

will be compared with various analytical predictions in an attempt

to determine the most satisfactory analysis.
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APPENDIX A

FORTRAN II COMPUTER PROGRAM FOR THE EVALUATION OF

A DONNELL TYPE OF DIFFERENTIAL EQUATION FOR A

SIMPLY-SUPPORTED C_LINDRICAL SHELL

Prepared by

Thomas D. Easter

This appendix was previously submitted at Technical Report A for

contract NAS 8-5168.
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Technical Report A for NASA Contract NAS8-5168

FORTRAN II COMPUTER PROGRAM FOR THE EVALUATION OF A

DONNELL TYPE OF' DIFFERENTIAL EQUATION FOR A SIMPLY-

SUPPORTED PreparedCYLINDRICALBy SHELL __

Thomas D. Easter Iy

This report presents a FORTRAN II Computer Program for use with

the Univac Solid-State 80 Computer for obtaining the solution of equation

(32) in the report, "A Study of the Stability of Reinforced Cylindrical

and Conical Shells Subjected to Various Types and Combinations of Loads,

Section I-General Instability of an Orthotropic Circular Cylinderical Shell

Subjected to a Pressure Combined with an Axial Load Considering Both Clamp-

ed and Simply Supported Edge Conditions," by Carl C° Steyer and T. A.

Carlton, Jr., submitted November 1962 under Contract No. NAS8-5012 to

the George C. Marshall Space Flight Center of the National Aeronautics

and Space Administration.

The FORTRAN II program solves equation (32) of the above referenced

report by the following computational steps:

Part A: For Assigned R/t and k

I. Given particular values of Ex, Es, Vxs , sx' and h (or t),

the extensional and shearing stiffnesses, aI, =2' _3' _4'

and the bending and twisting rigidities, DI, D2, D3, D4, are

calculated.

2. Using the computed valuea of Step I, the constants dI, through

d42, are computed.

3. For a selected set of values for m and n, the constants d43

through d49 are computed°
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4. Using an assigned value of k I (kl=-_q), the solutions of equation

(32) yields maximum and minimum values of R2q. Using the minimum

positive value of q, the value of J is computed.

5. The value of m is incremented and Steps 3 and 4 are repeated

yielding a new value of _.

6. Step 5 is repeated until O=_min is obtained for the n assumed

in Step 3 and kI of Step 4. The val',le of m is then set to its

original value.

7. The value of n is incremented and Steps 3 through 6 are repeated.

8. Step 7 is repeated each time n is incremented until O=_min' the

minimum _ occurring for the value of kI assumed in Step 4 is ob-

tained. The value of n is then returned to its original value.

9. The value of kI is incremented and Steps 3 through 8 are repeat-

ed resulting in a value of _=_min for the new value of k I -

lO. Step 9 is repeated for an applicable range of kI values, render-

ing a O=ami n for some combinations of m, n and kI and the assumed

values of R/t and k. It should be noted that kI may be positive

or negative. At the completion of Step I0 the value of kI is

returned to its original value.

Part B: For a New R/t Value

I. Since a new value of R/t for a fixed value of R implies a change

in t, new values of a I, _2' _3' _4' DI' D2' D3, and D4, are com-

puted.

2. Steps 2 through I0 of Part A are repeated resulting in a minimum

positive value of _ for some combination of m, n and k and the

new R/t.

I
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The information o0tained from Parts A and B may be presented in

tabular form involving _, m, n, kl, R, t, and L to display composite

results of the effects of cylinder geometries and internal pressures or

the information may be displayed in graphical form, e.q., J vs R/t, etc.

A summary of the FORTRAN names used in the computer program is shown

below in the Fortran Notation Legend.

FORTRAN NOTATION LEGEND

Variable Fortran Program Name

dI D(I )

d2 D( 2 )

d 3 D( 3 )

d4 D(4)

d49 D(49 )

c_1 A 1

_2 A 2

_3 A 3

_4 A 4

DI Ol

D2 D2

D3 D 3

D4 D4

k y

A3

/

/

I
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Variable

m

n

kI

Ex, Es, (Moduli of Elasti-

city for orthotropic circular

cylindrical shell)

Modulus of ridigity

v (Poisson's ratios
_XS' SX'

for orthotropic shell)

K1 (P/q)

R (radius)

L (length)

h or t (thickness)

d49

d46

d49

d46

2_RH

integer counters

used for program

purposes

R/t Value

(d46 + kI d47)

d46 + kI d47

d49k Id43

Fortran Prosram Name

A

B

S

G

FNUXS, FNUSX

S I

R

C

H

RSQ

PRSQ

SGMA

I &J

ROT

BR

BRABS

AC

A4

i



I

I

I
I

I
I

i
I
I

I
I
I

I

I
I

I

I

,!

(BR)2_4(AC)

RAD

(R2q)l

(R2q)2

_(R2q)l

(R2q)2

PRS_I

2_RH

2,_RH

R 2

2

a 4

Ctle 2

_I_3

_2c_3

a3cL4

cL1 D 3

c_2 D 3

(_3D2

5R

D3R

D4R

k 2

k2m 2

ROT

RADRT

RSQI

RSQ2

PRSQI

PRSQ2

SGMAI

SGMA2

R2

A42

AI2

A13

A23

A34

A1 03

A203

A3D2

DIR

D2R

D3R

D4R

S2

YA2

A5
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k m YA4

2
n B2

4
n B4

D 3 D 4 D34

D 2 D 3 D2 3

The following explanations of the program input and output system

used the Fortran Program names listed above in order to make the explan-

ations compatible with the actual Fortran Program.

INPUT

Data cards are read into the program in the following order and

form: The First Data Card contains the constants EX, ES, FNUXS, G, and

the variable H. They are in the following order, EX, ES, G, H, FNUSX,

and FNUXS, with a Read Format Statement of (6EI0.4), which means this

data must be punched on the first data card in the following form.

Columns Ol to I0 First data word, EX.

Columns II to 20 Second data word, ES.

Columns 21 to 30 Third data word, G.

Columns 31 to 40 Fourth data word, H.

Columns 41 to 50 Fifth data word, FNUSX.

Columns 51 to 60 Sixth data word, FNUXS.

Example: Let EX = 1.03x107, and ES = 1.3x102. Only the first portion

of the data card is illustrated below. The remainding values,

G, H, FNUSX, FNUXS, would be punched in the remainding spaces

as outlined above with the same form as EX and ES.

EX ES
Column No. 1 2 3 4 5 6 7 8 9 i0 II 12 13 ]4 15 16 17 18 19 20--80

Word Form 1 0_+ 0 7 ) 1 3 - _

Exponent sign Algebraic sign Exponent

G: H, FNUSX, and FNUXS would go in columns 21 to 60, following

EX and ES.

A6
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The Second Data Card conta_.ns the variables S, H, R, C, SI, and

ROT. S1 here is the initial value of SI. The Read Format Statement

is (5EI0.4, I4). I4 is the only change from the above explanation.

It means begin at column no. 51, and punch an integer of 1 to 4 numbers:

Example: For ROT = 25 and ROT = 1250.
ROT

Column No .................... 51 52 53 54 55 --

2 5 --

1 2 5 0

The Third Data Card contains the variables SI. S1 here is the

second value of SI. The Read Format Statement is (E15.7) which means

one S1 value per card punched in the first 15 spaces.

The number of different values of Sl's desired for each R/t ratio

will determine the number of remaining data cards which will have the

same form as the third data card explained above.

Example: If SI = 0.I, 0.2, 0.3, 0.4, 0.5 for an assigned value of

the R/t ratio, the initial value of SI = 0.I will go on the

second data card, the remaining values of SI will go on data

cards 3 thru 6 as follows: 0.2 to card three, 0.3 to card

four, 0_4 to card five and 0.5 to card six. The form used

is the same as that explained for card three above.

If it is desired to run data for more than one R/t ratio, duplicate

the above data card procedure for the new R/t ratio and place these cards

after the cards for the first R/t ratio° This can be carried out for

any number of R/t ratios.

OUTPUT

In the printout, the sym0ol # represents an equal sign (=). The

variable is printed out, followed by its value. The meaning of the

variable can be found in the Fortran NOtation Legend.

I
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Exponent sign_ Exponent
Example: A # 1.0000E" _ In the Fortran Notation Legend, A is shown

to represent m, therefore the above statement reads m = I. If

the exponent is positive, a blank space will be left between

the E and the exponent as shown above. If the exponent is

negative, a minus sign (-) will be printed between the E and

the exponent. If m had been negative, a minus sign would be

printed between the # and 1 as follows: A # - 1.0000E 00

When ':SCALED RADICAL OPERATION" appears on the printout, this means

that some of the values in the operation have reached the point of over-

flow and have been scaled down.

When "NEGATIVE RADICAL:' appears on the printout, this means that

the value under the radical in the quadratic equation used in the pro-

gram, is negative. Conversely, the printout "POSITIVE RADICAL '= indicates

that the value is positive.

"SIGMA MINIMUM" is the minimum value for _ for a particular value

of m, with m varying and n held constant. "SIGMA MINIMUM FINAL" is the

final minimum value of _ for a kI value, varying m over a range of n's

with kI and R/t held constant. The final value printed for __SIGMA MINIMUM

FINAL" is the minimum value.

Each time new values of A, B, ROT, and S1 are used, it will be

indicated on the printout as _NEW VALUE FOR A _ or _NEW VALUE FOR B, _'

etc.

When S1 = 0, this is indicated on the printout and the program

performs a special operation for finding the value of _ in this case,

which will be indicated by _SGM_.'_. Only one value of J is found, since

the quadratic equation is not used in this special case.
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CONTROL OF RANGE OF A AND B

Statement 134 in the program controls the range over which B will

run. This statement is in the following form:

Column No. 1 2 3 .... 7 8 9 I0 - 80

1 3 4 I F ( B - 17.0) 127, 130, 130

The number 17.0 inside the parenthesis controls the upper

limit of B. In this case B will run or increment up to 17.

If it is desired to change the upper limit of B, all that is

needed is to change the number in parenthesis, which must be

written as a real number.

Example: For the upper limit to be 24, change 17.0 to 24.0.

Column No. 1 2 3 .... 7 8 9 I0 ........................... 80

1 3 4 I F ( B -24.0) 127, 130, 130

The lower limit of B can be changed by changing statement i00,

which is in the following form:

Column No. 1 2 3 .... 7 8 9 I0 II 12 13 14

1 0 0 B = 1 0

The lower limit of B, or the point B starts at is I.

-80

To have B

start at 4, you would change the 1.0 to 4.0. These must be written as

real numbers. The new statement would be as follows_

Column No. 1 2 3 .... 7 8 9 I0 II 12 .................... 80

I 00 B= 4 0

In the above examples, B would start at 4 and run to 24. In the

original case, B would start at I and run to 17.

The upper limits of A is controlled by statement 135, which is in

the following form:

Column No. 1 2 3 .... 7 8 9 I0 II .......... 80

1 3 5 I F ( I - 25) 102, 126, 126

The number 25 inside the parenthesis means that A will in-

I
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crement by i, 25 times after a minimum value of _ has been

found. The total number of A's will be 25 plus the number

of A's used to reach a minimum value of _. To change the

upper limit of A, change the number in the parenthesis. These

numbers must be written as integers only. If the value 25 were

replaced by 30, 5 more values of A would be added. The new

statement would be as follows:

Column No. 1 2 3 7 8 9 ......................... 80

1 3 5 I F (I - 30) 102, 126, 126

The lower limit of A is controlled by statement I01, which is

of the following form:

Column No. 1 2 3 ..... 7 8 9 i0 Ii - 80

I Ol A = 0 0

This means that A starts at 0 and must be written as as a real number

0.0. If you wanted to start A at 6, you would change the statement to read:

Column No. 1 2 3 .... 7 8 9 I0 II 80

1 0 1 A = 6 0

By changing statements 134, 135, I00, and i01, the programmer can

change or cut down the range of A and B, thus eliminating needless compu-

tations in certain cases.

!
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The source program listing for the cylinder problem is as follows:

C FORTRAN PROGRAM FOR CYLINDER PROBLEM. A FINAL MINIMUM VALUE OF

C SIGMA IS FOUND FOR A FAMILY OF K 1 VALUES FOR EACH RADIUS TO

C THICKNESS RATIO.

DIMENSION D(49 )

99 READ i, EX. ES, G, H, FNUS). _, FNUXS

1 FORMAT (6E] 0.4)

A1 = (EX*H)/(I. 0-FNUSX*FNUXS )

A2 = (ES*H)/1.0-FNUSX*FNUXS )

A3 = (G'H)/2 0

A4= (EX*FNUSX*)/( 1.0-FNUSX*FNUXS )

D1 = (EX*H** 3 )/(12.0* )I. 0-FNUSX*FNUXS ) )

D2= (ES*H**3)/(I 2.0* (i. 0-FNUSX*FNUXS ) )

D3= (G'H** 3 )/12.0

I)4= (EX*FNUSX*H** 3 )/i 2.0* (I. 0 FNUSX*FNUSX ) )

READ 2, S, H, R, C, SI, IROT

2 FORMAT (5EI0.4,14)

PRINT 17, IROT

1 7 37H STARTING OVER FOR A NEW VALUE OF ROT =

3

FORMAT (13/. ,14:

PRINT 3, AI, A2, A3, A4, DI, D2, D3, D4, S, H, R, C, SI, IROT

FORMAT (18H DATA PRINT OUT .... ,2 5HAl = ,El5.7,/, 5HA2 = , EIS. 7

15HA3 = ,EI5.7,/,SHA4 = ,EIS.7,/,5HDI = ,,EIS.7,/,5HD2 =

25HD3 = ,EIS.7,/,SHD4 = ,EIS.7,/,SHS = ,EIS.,/,SHH =

3R = , E15.7,/,5HC = ,E15.7/,SHSI = .E15.7,/,6HROT =

Y= (3.1 41 5926*R )/C

R2=(R*_2 )

A42= (A4"'2)

,E15.7,/,

,EIS. 7,/, 5H

,14.5/)

All

I
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D34= D3*D4

D23=D2*d3

AI 3=AI*A3

AI 2=AI *A2

A23= A2*A3

A34=A3*A4

A! D3=AI * D3

A2 D3=A2*D3

A3D2=A3*D2

DIR=DI*R

D2R= D2*R

D3R =D4*R

D4R= D4*R

I=0

SMAX2=I. 0E+49

D(41 )=AI 2"R2

D( 42 )=(-A42*R2 )+AI* I)2

D( 39 )=(A23"R2 )+(A2 D3/2.0 )

D(40 )= (A31)2 )+ ( 1)23/( 2.0*R2 ) )

D( 34 )= (A12*A3*R*R2 )- (A43*A3*R*R2)( (A12+A42 )* D3R/2.0 )

D( 35 )= (A13*D2R )+ ( (AI* D23 )/(2.0*R ) )

D(36 )=2.0*AI* I_

D(37 )=AI*R

D(38)=D(37)

D( 33 )= ( (A34+A42 -A12 )*2.0_R2 )-A4* D3 )

D(2 7 )=2.0"A34" D3R

D(28 )=( (A12-A42- (2.0"A34))* D2R)+ ( ( (2.0*A3)+A4)* D2 3/R )

D(29 )= ( (A12 -A34 A42 )* 2.0*R2 ) (A4 * D3 )

A12
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D( 30 )= ( ( (A3* D4 )+AI* D2 ) )*2.0+ (D34/R2)

D(32 )=A3*R )+ (D3/(2.0*R) )

D(31 )=-D(32)

D(25)=-(2.0*D(39 ))

D( 26 )= ( ( (2.0*A3 )-AI )*R )+ (D3/R )

D(22 )= (A23_D2R)+ ((A2*D23)/(2.0*R) )

D(23)= D(25)

D(24)=2.0*D(40)

D(19 )=(2.0*AI3*D4R)+((AI*D34) R)

D(20 )=AI* DI

D(21 )=AI 3*R2+AI D3/2.0

D(I 8 )=AI D3- (2.0*AI 3"R2 )

D(I 4 )= (AI 2 - (2.0"A34)-A42 )*2.0*D3R

D(I 5)= (( (2.0*AI2)-(4.0"A34)-2.0"A42 ))*D4R)+ (2.0*AI 3*D2R+ i ( ( (AI*D23 )+

(4.0*A3*D34)+ (2.0*A4* D34 ) )/R )

D(16)=(AI3*R2+ (AI*D4)+(AID3/2.0)

D( 1 7 )= ( (A 12-A42 - (2.0*A 34 ) )*R2 + (( (2.0*A 3 )+A4 )* D3 )

D( 13 )= ( (2.0"A34)-AI 2+A42 )*2.0**R2

D(9 )= (4.0*A23" D3R)+ ( (2.0*A4* D23 )/$ )

D( I 0 )= ( (AI 2 -A34-A42 )*2.0* D2R )+ (2.0*A23* D4R )+ ( ( (2.0*A3* D23 )

I+ (A2* D34) )/R )

D( 11 )= ( (AI 2 -A42 - (2.0*A 34 ) )*R2 )+ (AI* D2 )-A4* D3 )+ (2.0*A3* 1)4)+ (D34/R21 )

D(12 )=I)'39 )

D(8)=D(25)

D(6)=2.0_ D(22 )

D( 7 )= (A23"R2 )+A3D2+ ( (A2 D3+ (D23/R2 ) )./2.0 )

D( 5 )=AI 3* DI R )+ ( (AI D3* DI )/(2.0*R ) )
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I00

I01

102

18

AI4

D( 4 )= ( (AI 2-A42- (2.0"A34))* DIR )+ (2.0*AI 3* ( D3R+ D4R ) )+ ( ( (AI* D34)+ I (2.0*

A3* DI* D3 )+ (A4* DI* D3 ) )/R)

D( 3 )=2.0*AI 2* D3R+ 2.0*AI 3* D4R+A23" DI R+AI 3*D2R-2.0"A42" D3R

1-4.0"A34" D3R-2.0"A42" D4R-4.0"A34" D4R+ (A2 D3* D! +AI * D2 3 )/(2.

20*R)+ ( 4.0*A3* D34+ 2.0*A4* D34)/R

D(2 )= (( (2.0*AI2)-A42- (2.0"A34))*D2R )+ (2.0*A2 3" (D3R+D4R))

I + (( (A2* D34 )+ (2. O'A3* D2 3 )+A4* D2 3 ) )/R )

D(I )= (A2 3" D2R)+ ( (A2* D2 3 )/(2. O'R) )

PRINT 4, (J, D(J), J = I, 42)

FORMAT (2HD(,12,4H) = ,E15.7/)

B=I. 0

A=0.0

PRINT 5,

FORMAT (14HNEW VALUE OF B,2/)

SMAX= I. 0E+ 49

PRINT 18,

FORMAT (14 HNEW VALUE OF A, 2/)

A=A+I .0

YA2=Y*_2*A**2

YA4=YA2**2

B2=B**2

B4=B2**2

$2=S*'2

D(43 )= ( (YA4* D( 37 ) )+ (YA2*B2* D( 32 ) ) )/2.0

D(46 )=- ( ( (YA2*YA4* D(21 )+YA4*B2* D(I 7 )+YA2*B4* D(I 2 ) ))/2.0 )

D(47)= (YA2* (D(41)+ ($2"*D(42))))- (B2* (D(39)+ ($2"D(40))))+ (YA4*S

I'D( 36 ) )+ (YA2*B2* ( D( 29 )+ (S"_"D( 30 ) ) ))+ (B4* (D( 23 )+ (S* D(24 ) ) ) )- (YA4

I
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104

2*YA2* D( D( 2 0 ) )- (YA4*B2* D( 16 ))- (YA2*B4* D( iI ) )- (B2*B4* D( 7 ) )

D( 49 )= (YA4* (D( 34 )+ ($2 * D( 35 ) )) )+ (YA2* B2* ( D( 2 7 )+ ($2" D(28 ) ) ) )+

1 (B4*S2*D(22) )- (YA2*YA4*S* D(19 ) )YA4*B2* ( D(14 )+ (S'D(1 5 ) ) ) )-YA2

2 * B4* (D (9 )+ (S* D( 10 ) ) ) )- (B2 * B4* S* D( 6 ) )+ (YA4*YA4* D( 5 ) )+ (YA2 *YA4

3"B2" D( 4 ) )+ (YA4*B4* D( 3 ) )+ (YA2 *B4*B 2 * (2 ) )+ (B4*B4* D( 1 ))

PRINT 6, D(43), D(46), D(47), D(49)

FORMAT (8HD(43) = .E15.7,/,8HD(46) = ,E15.7,/,8HD(47) =

18HD(49) = ,E15.7,6/)

103, 104, 103IF (Sl-0.0)

PRINT 7

FORMAT (8HSI = 0.0)

RSQ= (- (D(49)/D(46 ) ) )

PRSQ = 3.141 5926*RSQ

SGMA=PRSQ/( 6. 2831 852*R'H)

PRINT 8, SGMA

8 FORMAT (HSGMA = ,E15.7,12H

IF (SGMA) 150, 151, 151

150 PRINT 20,

20 FORMAT (30HSGMA FOR SI=0.0

GO TO 102

1 51 SGMAM= SGMA

GO TO 122

103 BR=D(46 )+SI*D(47)

BRABS=ABS (BR)

DOM=2 .0"SI*D(43 )

IF (BRABS-I.0E+I0) 105,105,

106 BR=BR* (I .OE-I 0)

FOR SI = 0.0)

IS NEGATIVE )

106

,E15.7,/,

AI5
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D(49 )= D(49 )"_ (1.0E-10)

D(43)=D(43)*(1.0Eq0)

AC = D( 49 )*SI * D(43 )

D(49)=D(49 )*(i. OE+IO)

D(43 )= D( 43 )* (1.0E+ 10 )

RA D= BR**2-4. O*AC

IF (RAD) 107, 108: 108

i07 PRINT 9,

9 FORMAT (24HSCALED RADICAL OPERATION)

GO TO 1 09

108 RADRT=SQRT(RAD)

RAIXIT=-RADRT* (I. OE+I O)

BR=BR* (I. OE+I 0)

PRINT 1 O,

I0 FORMAT (24HSCALED RADICAL OPERATION)

GO TO IIi

105 AC=D(49 )*SI*D(43)

RAD=BR**2-40*AC

IF (RAD)109, Ii0, Ii0,

109 PRINT II, Y, RAD, SI, A, B,

II FORMAT (26HNEGATIVE RADICAL .... Y = ,EI5.7,15X6H Rad = ,EI5.7,15X

15H S1 = ,E15.7, 15X4 HA = ,E15.7, 15X4 HB = ,E15.7,6. )

GO TO 102

II0 RADRT=SQET(RAD)

111 RSQI = (( BR )+ (RADRT) )/DOM

RSQ2 = ( ( -BR )-RADRT ) )/DOM

PRSQI = (3.1415926*RSQI )

AI6
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PRSQ2 = (3. 1415926*RSQ2 )

SGMAI =PRSQI/( 6. 2831852*R'H)

SGMA2= PRSQ2/( 6. 2831852*R*H )

PRINT 12, Y, RSQI, RSQ2, PRSQ2, SI, A, B, SGMAI, SGMA2

12 FORMAT (26H POSITIVE RADICAL--Y = ,E15.7, 15X7HRSQI - ,E15.7, 15X

17HRSQ2 = .E15.7, 15X8HPRSQI = ,E15.7, 15X8HPRSQ2 = ,E15.7, 15X5HSI =

2, E15.7, 15X4 HA = ,E15.7, 15X4HB = ,E15.7, 15X8H SGMAI = ,E15.7,

15XSHSG=MA2 = ,E15.7,6/)

IF (SGMAI-SGMA2) 113, 112, 112

112 IF (SGMA2)114, 115, 115

114 IF (SGMAI)116, 119, 119

116 PRINT 13

13 FORMAT (33HBOTH SGMAI AND SGMA2 ARE NEGATIVE)

GO TO 102

115 SGMAM#SGMA2

GO TO 122

113 IF (SGMAI) 118, 119, 119

118 IF (SGMA2) 120, 115, 115

120 PRINT 13,

GO TO 102

AI7

I 19 SGMAM=SGMAI

122 IF (SGMAM=SMAX) 123, 124, 124

12 3 SMAX= SGMAM

GO TO 102

124 U=A-I .0

PRINT 14, SMAX, U, B, SI, IROT

14 FORMAT (15H SGMA MINIMUM = ,EI'5.7, 10H, FOR A = El6 7, 5X4HB =

I
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IE15.7, 5X5 HSI = ,E15.7, 5X6HROT = ,14.6,/)

I=I+I

135 IF (1-5) 102, 126, 126

126 I=0

134 IF (B'-2) 127, 130, 130

127 IF (SMAX-SMAX2)129, 128, 128

128 B=B+I .0

GO TO I01

129 PRINT 15, SMAX, A, B, SI, IROT

15 FORMAT (22HSIGMA MINIMUM FINAL = ,E15.7, 10H, FOR A = ,EI5.7,5X

14HB = ,E15.7, 5X5HSI = .E15.7, 5X6HROT = ,14.6/)

B=B+I .0

SMAX 2= SMAX

GO TO I01

130 READ 22, SI

22 FORMAT (E15.7)

IF (SI-9.999999E+49) 131, 99, 131

1 31 PRINT 16

16 FORMAT (36HSTARTING OVER FOR A NEW VALUE OF $1. )

GO TO 100

AI8



APPENDIX B

FORTRAN II COMPUTER PROGRAM FOR THE EVALUATION OF

A DONNELL TYPE OF DIFFERENTIAL EQUATION FOR AN

ORTHOTROPIC CIRCULAR CONICAL SHELL

Prepared by

Thomas D. Easter

Colonel M. Pearson

Melvin K. Richardson

This appendix was previously submitted at Technical Report B for

contract NAS 8-%168.
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Technical Report B for NASA Contract NAS8-5168

FORTRAN II PROGRAM FOR THE EVALUATION OF A DONNEL

TYPE OF DIFFERENTIAL EQUATION FOR AN

ORTHOTROPIC CIRCULAR CONICAL __

SHELL __

Prepared by

Thomas D. Easter, Research Assistant

and

Colonel M. Pearson, Research Assistant

This report presents a FORTRAN II Computer Program that

operationally is compatible with the FORTRAN processors of the IBM

7090 and the UNIVAC SS 80 computers. Additional details regarding

the individual processors, actual machine compilation and object

program execution, and so forth, are available in separate program-

ming and operations reference manuals. Specifically, this report

presents a FORTRAN II Computer Program that evaluates constants

and coefficients for the Donnel-type, eighth-order, differential equation

in the report, "A Study of the Stability of Reinforced Cylindrical and

Conical Shells Subjected to Various Types and Combination of Loads,

Section I!I - General Instability of An Orthotropic Circular Conical

Shell Subjected to Hydrostatic Pressure and A Compressive Axial

Force, " submitted September, 1963, under Contract No. NAS8-5012

to the George C. Marshall Space Flight Center of the National Aero-

nautics and Space Administration.
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CONSTANTS

The constants which appear in equation (36) of the parent

report are functions of the physical parameters describing the conical

_hell. The parameters are as follows: _, the apex angle: _i, _ 2,

and _ 3 the extensional and shear stiffness coefficient5 _ p, the applied

external pressure; Q, the axial load; So , the value of S at the base

of the cone frustrum; 7_s and 7s8 , the Poissons ratios; h, the

wall thickness of the shell; and n, the number of waves in the cir-

cumferential direction after buckling has occurred.

Equations (29), (30), and (31) of the parent report can be

written in the following form:

AIF + A2F' + AsF" + A4G + AsG' + A6H + AvH' = 0 (29)

B, F + B 2 F' + B s G + B4G' + B 5 G" + B 6 H = 0 (30)

CI F + C2 F' + C3 G + C4H + Cs H' + C8 H"+ C7 H'"

+ C_ I_"" = 0 (31)

Where the superscripts appearing on F,

with respect to S. The coefficients A_s,

as follows:

Az = (a 2 _ a9 n 2) =I + (a z

S

G and H denote the derivative

B' s, and C'e are defined

- a 8 n 2) ,
m

A 2 = a 3 + a 4 S

A3 a5 + a6 _ + a7 _2 A4 a. n 1= _ - : - alo n
S

I A s - a12 n - a,3 n S A e = a_ 1 + al 4

S

!
A 7 = a16 + ai7 S

!

!
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BI = b2 n _1 + bl n B2 = bs n + b4nS

S

Ba = (b6 _ b:s n2) i + (b5 _ b l2n z)
S

B 4 = b_ + bs S

B5 : b9 + b_o _ + bn _2 B e = b15 n _1 + bt4 n
S

C1 = c1 1 + c2

S

__ w

C z = c 3 + c 4 S

-- 1
= - Cs n 1 _ n c6 C4 = (c20 n4 - c:s n2) _C3

S b

C5 = (clo _ Cl 7 n2 ) _l + C9
+ c8 =1 + (c 7 _ cl4n 2)

S

C6 = (c13 - c_9 n2) i + cn C7 = c16
S

--2

-i, S C8 = c18 #

Equations (29), (30) and (31) can be reduced to two differential

equations in terms of functions of F and H only.

D 1 F + D 2 F' + D 3 F" = h 2 (37)

E 1 F + E 2 F' + E 3 F" + E 4 F '7_ = h 3

Where the coefficients Di, El, h 2 and h s are defined as follows:

_I --v --2

D, : C1 (As Cs - A4C3) + C1 ( - AsC3) + A1 C3

(38)

-- ! --2
D2 : C2 (As C3 - A4C3) + (C: + C2)(-As C3) + A2 C3

D3 = C2 ( - As C3) + A3 C_

h 2 = D 4 H + D s H' + D 6 H" + D7 H'" + D s H "'_ + D 9 H u''_

D_ : C 3 ( - A6) + ( C4) (- A4C3 + As C3') + ( - As C3) ( C4')
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l _2 -- --

D_ = C, ( - A.,) + ( - %) ( - A., C_ + -%_/) + ( - -%_,)[- @4 + C?)]

D8 = ( - C6) ( " A4C3 + As C3) +

| _,
D,r = ( - C7) ( - A4Cs + As Cs) +

!i
D8 = (-C8) ( = A4C3 + AsC3) " (- AsCs)[- (C7 + C8')]

I
Do ( - A5C3) ( - C8)

l
h3 E I F + E 2 F' + E 3 F" + E 4 i-,:'

l
I E 1 A,@+ B,(-AsC3 a) + C,@+ C_"@

II
_2 -- ! --_, = A,@+B,(-Asq> +_,@+ (2C,+ _;'>@

I

I

I
= E 5 H + E 6 H' + E 7 H" + E 8 H 'v' + E 9 It

: @

H '_'__" + Elo + _'11 H
h 3

= = 2B 5 CsC3 + }3,1 Ca

@ = AsBsC s

I

I

I

I

I

I
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E_ = % G + (_) (C_ + 2 %' + %"1
!

!
E, : C¢_ + _ (% + 2 %' + %")

!
Elo = @(C7 + 2 C8')

!
E,1 = \3"_)_8

!
-- V --2 --2

= 2 A s B 5 C 3 C 3 d- A 5 B 6 C 3 _ A6 B4 C3

!
_-_ = - _= A s B 5 C3 _ - 2A 4 B 5 C3' - A5 B3C3 + A4 B4C3

!
! --2

= 2A 7B 5 C 3C 3 - A 7B 4C 3

!

!
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Equations (37) and (38) are reduced to one eighth-order Donnel-

type differential equations in terms of the function H alone, which is

itself a function of S or S, the coordinate in the generatrix direction.

The equation is the same as equation (36) of the parent report and can

be expressed in the equivalent form

T I H 8 + T 2 H 7 + ......................... + T 9 H = 0 (39)

where the T coefficients are defined as follows:

I T I = + K4 g8

-- !

I T_. = + K 2 (fT) + K:3 gs + K:4 (g7 + g8)

I I T3 = Kt f7 + K2 (% + -fT') + K3 g--7 + K4 (-g6 + gT')

T4 = Klf6 + K2(f5 +-fs') + K:s g-6 + K4(g5 + gs)

I
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I Ts = Kifs + K2 (f4 + -f_') + Ks gs + K4 (g4 + g_')

I

I
I

I

I

T6 = Klf4 + Ka (fa + _4') + E:3 g4 + K:4 (g3 + g--4')

TB = Klf2 + K2 (fl + f2') + N:3 g2 + K:4 (gl + g2')

q m -- |

T9 : Klf, + K2 (fit) + K3 gl + K4 gl

where:

I __ __
K i X' --= 2 )_3 - XaX' -_3+ ki a

I : ' +K _3'-K _3K3 K2 -_ S 2 1

K 4 = K 2 )l. 3

I __ |X 1 = K 2 D 1 - Ki D 2

I "X2 = K2 D2 - Da (K1 + K;)

X 3 = K 1 X2 - K a X 1

I Ki = Di 53 - [)i D3

I K_. : D a D a - D_. D 3

I [)i = D3 E i - E 4 D i'

I |

[)a = D3 E2 - E4 (Di + D2)

B6
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T) 3 : D 3E3 - E 4 (D2 + D3' )

F-'I = D 3 E_ - E 4 D 4'

_]2 = D3 E6 - E4 (D4 + D5')

_]s : Ds E7 - E4 (]95 + D6')

_34 = D 3 E 8 - E 4 (D 6 + Dr')

_2s = D 3 E9 E4 (D7 + D8')

_26 = D 3 E,o - E 4 (Ds + D9')

E 7 = D 3 E,, - E 4 (D9)

71 = _)3 D4 - D3 _]l

f2 = D3 n5 - D3 E2

B __

f3 = D3 D6 - Dz E3

f4 = D 3 D 7 - D 3 E_

fs = D3 D8 - Dz E5

-f6 : _)3 D9 - D3 _]6

-f7 - D3 E7

gl = K2 D4 - D3 f,

B7
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g2 = K2 D5 - Ds _1 + -f2')

B8

g--3= K2 D8 - D3 (72 +-f3')

g--4 = K2 D7 - D3 (f--3 + -f4')

__ B!
gs = K2 I)8 - Ds _4 + %)

g'_ = K2I)9 - D3 _5 + -fs')

L : -%_o +L')

m

gs - Ds f7

The T coefficients calculated in equation (39) are polynomials

in S. A designation which is used to denote all the T i coefficients

and their components is as follows:

--n

Ti = _i, n S

m

where 11 denotes the constant coefficient of a particular S, the sub-

script i corresponds to the subscript of T i and n denotes the

power of S. The range of S for each order of H is as follows:

- 31 _0 __28

TI = tl,- 31 S + ....... + tl, 0 S + tl, i S +...+ t,, 28 S

T2 = t2, - 32 S

m

T3 = t3,- 33 S

T4 = t4,- s4 S

- _2

- 33

- 34

............................... + t2, 2"/

_ 27

S

_29

............................... +t3, 29 S

__28

............................... +t4, S

- 35 __27

Ts = ts,- 35 _ ............................... +ts, 27 S



I

I
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I
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- 36

T 6 = t_,_ 36 S ........................ + t6 '

B9

__ - 37
__25

25 S

-- 38 __ 24

T8 = ts,- 38 S ......................... + t8, 24 S

__ 39 __ 23

T9 = t9,- 39 S ......................... + t9, 23 S

The powers of S, for any particular Ti, increase uniformly until

the highest power is reached. This fact is indicated above by the

dashes between the term of the lowest order and the term of the high-

est order.

I

I

I

I

I

I

I

I

I

I

I
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FORTRAN II COMPUTER PROGRAM
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GENERAL

The following FORTRAN II computer program has been

developed to calculate the T i coefficients of equation (39) of this

report from data consisting of the parameters _ , D i , D:_ , D 3 , :_ i ,

'2 , , 3, P, Q, So,/0s, h andn. The manner in which these data words

are read into the computer is presented under FORTRAN iI COMPUTER

PROGRAM INPUT AND OUTPUT INFORMATION of this report. The

values of the coefficients calculated in intermediate steps are printed

as they are computed so that they may be checked at any point of pro-

gression of the program. The appropriate heading is printed imme-

diately above each coefficient printout in order to specify the coeffi-

cients being printed. Full details on printout information is found un-

der FORTRAN II COMPUTER PROGRAM INPUT AND OUTPUT IN-

FORMATION of this report.

FORTRAN II LEGEND FOR INPUT DATA

The FORTRAN II designation for input data words is as follows:

nput parameter FORTRAN II name

AL

D 1 DE1

D 2 DE2

D_ DE3

c_1 ALl

a2 AL2

_3 AL3

p P

Q Q

I



I

I

I

S SO

q'/9s GAM

Bll

I

I

h H

n A

FORTRAN II LEGEND FOR COMPUTED VARIABLES

I Due to the restrictions on variable names in the FORTRAN II

i language, many of the coefficient names were reassigned. The follow-
ing table gives a complete list of the coefficients with their correspond-

i ing FORTRAN II designation. In every case, the subscript (1) corre-
sponds to the lowest powe: of S, the highest subscript corresponds

"4

i to the highest power of S. For example, DI(1) is the FORTRAN II
name for dl, 3 , T9(1) is the FORTRAN II name for t9, _ _j , etc.

i The dimension of each variable is its total number of subscripts.

i FORTRAN II Lowest _ Highest _Coefficient Variable Power of S Power of S Dimension

Name

I D 1 D1 -3 0 4

I D 2 D2 -2 1 4

I D 3 D3 - 2 2 5

I D 4 D4 - 5 0 6

I D S D5 -4 1 6

I D 6 D6 - 3 2 6

I D 7 D7 - 2 3 6

I
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I

I

I
I

I
I

I
I

I
I

I

I
I
I

I
I

I
I

D 8

D 9

El

E2

E3

E4

E 5

E6

-,.. . ,,

E,
7

E8

E 9

E_o

E11

D
I

b,

D8

D9

El

E2

E3

E4

E5

E6

E7

E8

E9

El0

Ell

DIB

D2B

D3B

-i

0

-4

-3

-3

-i

-6

-5

-4

-3

-2

-I

0

-6

-5

-5

2

1

2

3

4

1

2

3

4

5

3

4

3

4

5

BI2

3

3

6

6

7

6

8

8

8

8

8

5

5

10

10

11
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I

I

I

I

I

i

I

I

!

I

I

I

I

I

I

I

I

E
1

E2

m

E3

E4

E 5

E 6

E 7

fi

f2

f3

m

f4

K 1

K 2

E1B

E2B

E3B

E4B

E5B

E6B

ETB

F1B

F2B

F3B

F4B

FSB

F6B

FTB

R1

R2

-8

-7

-6

-5

-4

-3

-2

-i0

-9

-8

-7

-6

-5

-4

-8

-7

3

4

5

6

7

5

6

5

6

8

6

B 13

12

12

12

12

12

9

9

16

16

16

16

16

13

13

14

14
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I

I
I
I

I
I
I

I

I

I
I

I

I
I
I

K3

K4

gl

g2

g3

g7

Y1

Y2

Y3

R1B

R2B

R3B

R4B

GIB

G2B

G3B

G4B

G5B

G6B

G7B

G8B

-18

-29

-28

-26

-25

-13

-12

-II

-I0

-9

-8

-7

-6

6

7

12

18

19

17

18

6

7

8

9

I0

II

9

i0

18

18

31

48

48

44

44

20

20

20

20

20

20

17

17

B 14
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FORTRAN II LEGEND FOR INTERMEDIATE TERMS

In calculating certain coefficients, it was necessary to utilize

some intermediate terms. The intermediate terms are specified as

follow s:

Intermediate FORTR/_N II Lowest Highest

Term Name Power of S Power of S Dimension

I

I

I

I

I

I

I

I

I

I

I

I

I

I

D 3 E, D3E1 -6 3 10

E 4 D,' E4D1P -5 3 9

D 3 E 2 D3E2 -5 4 10

D 1 + D 2' D12P -3 0 4

E 4 (Dx + D2') E412P -4 4 9

D 3 E 3 D3 E3 - 5 5 11

D2 + D3' D23P -3 1 5

E 4 (D 2 + D3' ) E423P -4 5 10

D 3 E s D3E5 -8 3 12

E 4 D 4' E4D4P - 7 3 11

D 3 E 6 D3E6 -7 4 12

D 4 + D 5' D45P -5 0 6

E 4 (D 4 + D_') E445P -6 4 11



I

I
I

i
i

I

I

I
.I
I

I
I
I
I

I
I
I
I

D S E 7

E4 (D 5 + D6' )

D3 E8

D 6 + D 7'

E 4 (D 6 + D_')

D 3 E 9

D 7 + D8w

E4 (D 7 + Ds' )

Ds E,o

D s + D 9'

E4 (D8 + D9')

D 3 E n

E 4 D 9

D S D 4

D3E7

D56P

E456P

D3E8

D67P

E467P

D3E9

D78P

E478P

D3E10

D89P

E489P

D3E11

E4D9

D3BD4

D3E1B

-6

-4

._5

-5

-3

-4

-4

-2

-3

-3

-1

-2

-2

-1

-10

-10

5

6

2

6

7

3

6

6

5

5

12

6

11

12

6

11

12

11

9

3

8

9

8

16

16

B 16
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I

I

I

I

I

I

I

I

I

I

I

I

I

I

!

I

I

D 3 D5

m

D 3 E 2

Da D6

Da E3

_)3 D7

D3 E4

D 3 D 8 .

D3 E5

D3 D9

D3 E6

D3 E 7

DI _)3

b_ D 3

D2 D 3

K 2 D_

D3BD5

D3E2B

D3BD6

D3E3B

D3BD7

D3E4B

D3BD8

D3E5B

D3BD9

D3E6B

D3E7B

DID3B

DIBD3

D2D3B

D2BD3

R2DI

-9

-9

-8

-8

-7

-7

-6

-6

-5

-5

-4

-8

-8

-7

-7

-10

6

6

7

7

8

8

6

9

7

7

8

5

5

6

6

16

16

16

16

16

16

13

16

13

13

13

.14

14

14

14

17

B 17
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I

I

I

I

I

I

I
I

I

I

I

I

I

1
I

I

I

K 2 D 2

(K_ + Kz' )

D3 (K1 + K2 w)

KI X2

K2XI

-- l

X2Xs

X2Xs

Xl_- 3

K2'_ a

K2Xa

KlX 3

K2 D4

D3"fl'

K 2 D 5

R1PD2

R2D2

R12

D312K

R1Y2

R2Y1

Y2PY3

Y2Y3P

Y1Y3

R2PY3

R2Y3P

R1Y3

R2D4

D3F1P

R2D5

F12

-11

-9

-8

-10

-18

-18

-29

-29

-29

-26

-26

-26

-12

-13

-11

-10

5

7

5

7

12

12

18

18

18

17

17

17

6

6

7

5

17

17

14

18

31

31

48

48

48

44

44

44

19

20

19

16

B 18
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I
I

I

I
I

I
I

I
I

i
I
I

I

I

D3 (fl + f2)

K 2 D 6

D, (%.÷%')

K2 D7

_ +-_')

D_{_ +_,')

K2 D8

_4 +-fs')

D_(f_+_')

K 2 D o

D_(_+_o')

K2 f7

D312

R2D6

F23

D323

R2D7

F34

D334

R2D8

F45

D345

R2D9

F56

D356

F67

R2F7

-12

-10

-9

-11

-9

-8

-10

-8

-7

-9

-7

-6

-8

-5

-32

7

8

6

8

9

7

9

7

8

10

8

9

11

7

27

B 19

20

19

16

20

19

16

20

16

16

20

16

16

20

13

6O

K 3 _ R3G8 -32 27 60
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1
I

I
I
I

I
I
I

I

I

I
I
I

K_ f7

K_(f_+ ,

Ka gv

-- __ |

(g6 + g7 )

_ @ + _)

K1 f6

Ka g6

(_+_')

K1 fs

-- __ --|

K2 (f4 + fs )

K3 g5

(_+_')

-,)

K, f4

K3 g4

--!(}_+ g_)

G78

R478

R1F7

R267Z

R3G7

G67

R467G

R1F6

R256Z

R3G6

G56

R456G

R1F5

R245Z

R3G5

G45

R445G

R1 F4

R234Z

R3G4

G34

-7

-32

-33

-33

-33

-8

-33

-34

-34

-34

-9

-34

-35

-35

-35

-10

-35

-36

-36

-36

-11

9

27

26

26

26

11

29

25

28

28

10

28

27

27

27

9

27

26

26

26

8

17

60

60

60

60

20

63

60

63

63

20

63

63

63

?A

63

2O

63

63

63

63

2O

B 20
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I

I
I

I
I

I
I

I
I
I
I

I

i
I

I

I
I

I

K1 f3

K2 (f2 + f3)

K3 g3

(g2 + g3')

_ (_ + g-;)

K1 f2

K2 (fl+-f2')

K3 g2

(_ +_;)

_ (_, +_')

K, f,

K2 fl'

K3 gl

_ |

K4 gl

R434G

R1F3

R223Z

R3G3

G23

R423G

R1F2

R212Z

R3G2

G12

R412G

R1F1

R2F1P

R3G1

R4G 1P

-36

-37

-37

-37

-12

-37

-38

-38

-38

-13

-38

-39

-39

-39

-39

26

25

25

25

7

25

24

24

24

6

24

23

23

23

23

B21

63

63

63

63

20

63

63

63

63

2O

63

63

63

63

63
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Input The input data which must be punched on cards are the con-

stants c_ , DI, D2, D3, c_I,_2,_ 3, P, Q, S, 7@s , h, n. This data

is punched on four cards.

The first data card will contain c_ in spaces 1 through 18, D I

in spaces 19 through 36, D 2 in spaces 37 through 54, and D 3 in spaces

55 through 72.

The second data card will contain al in spaces 1 through 18, a2

in spaces 19 through 36, a3 in spaces 37 through 54, and P in

spaces 55 through 72.

The third data card will contain Q in spaces 1 through 18,

S in spaces 19 through 36, _6s in spaces 37 through 54, and h in spaces

55 through 72.

The fourth data card will contain the value of n in spaces 1

through 18.

The format for the values to be punched in their above assigned

spaces is as follows: The value of the constant is preceded by the

algebraic sign of plus or minus. A decimal point is punched between

the first and second character of the value. The value is followed by

an exponent sign of plus or minus. Following the exponent sign is the

power of the exponent. This format is shown in the example below.

Example:

a = 22.1

Punch Format for c_:

= -263

algebraic sign exponent
/

+2.21 +

decimal exponent

point sign

Punch Format for _: - 2. 63 + 02
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All the constants should be punched according to the example

format and in the extreme right of their allotted spaces.

Output. A descriptive title is printed before each section of the pro-

gram printout. All of these values are printed out in floating point

numbers. This format explanation is the same as the punch format

explanation above.

The first descriptive title is, "A i through A 17. " This means

that the following values in this section are the values for A 1 through

A 17. If the first value was - 0. 2336111 E + 01, this would be

written in fixed point arithmetic as - 2. 336111. The following

sections of the printout would be interpreted the same as the above

section.
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The program which defines the operations which the computer is to

do, and which is written by the programmer in the FORTRAN I I language is

called the FORTRAN I I Source Program.

An occasional comment and the inclusion of defining equations to

facilitate the correlation of program variables to report variables will occur

at certain intervals in the source program. This is to be regarded as

supplemental information only and not an integral part of the FORTRAN I I

instructions. With this in mind and with reference to FORTRAN II Legends

presented earlier in this report, the reader should have little difficulty in under-

standing the following source program.

C INSTABILITY @F AN @RTH@TR_bPIC CIRCULAR

C C(_NICAL SHELL SUBJECTED T_b HYDR@STATIC

I

I

Ii

I

I

I
I

I
I

I

I

C PRESSURE AND A C(_IVIPRESSIVE AXIAL F_bRCE

DIMENSI(_N DI(4), D2(4), D3(5), D4(6), D5(6), D6(6), D7(6), D8(3),

ID9(3), El(6), E2(6), E3(7), E4(6), E_(8), E6(8), E7(8), E8(8), m9(

28), El0(5), Eli(5), DIP(4), D2P(4), D3P(5), D4P(6), D5P(6), D6P(6)

3, D7P(6), D8P(3), D9P(3), D1B(10), D2B(10), D3B(ll), E1B(12), E2B(

412), E3B(12), E4B(12), E5B(12), E6B(9), E7B(9), F1B(16), F2B(16),

5F3B(16), F4B(16), F5B(16), F6B(13), F7B(13), F1BP(16), F2BP(16), F3

6BP(16), F4BP(16), F5BP(16), F6BP(13), FTBP(13), RI(14), R2(14), R1

7P(14), R2P(14), YI(18), Y2(18), Y3(31), RIB(48), R2B(48), R3B(44),

8 R4B(44), GIB(20), G2B(20), G3B(20), G4B(20), GSB(20), G6B(20), G7

9B(17), G8B(17)

DIMENSI@N GIBP(20), G2BP(20), G3BP(20), G4BP(20), G5BP(20), G6BP(2

I0), GTBP(17), G8BP(17), TI(60), T2(60), T3(63), T4(63), T5(63), T6

2(63), T7(63), T8(63), T9(63), D3EI(10), E4DIP(10), D3E2(10), DI2P(

34), E412P(9), D3E3(II), D23P(5), E423P(10), D3ES(12), E4D4P(II), D

43E6(12), D45P(6), E445P(II), D3ET(12), D56P(6), E456P(II), E3E8(12

5), D67P(6), E467P(II), D3E9(12), D78P(6), E478P(II), D3EI0(9), D89

6P(3), E489P(8), D3EII(9), E4D9(8), D3BD4(16), D3EIB(16), D3BDS(16)

7, D3E2B(16), D3BD6(16), D3E3B(16), D3BDT(16), D3E4B(16), D3BD8(13)

8, D3ESB(16), D3BDg(13), D3E6B(13), D3E7B(13), DID3B(14), DIBD3(14)

9, D2D3B(14), D2BD3(14), R2DI(17), RIPD2(17), R2D2(17), R12(14)
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DIMENSI(_N D312K(48), R1Y2(31L R2Yl(31), Y2PY3(48).o Y2Y3P(48), Y1Y

13(18), R2PY3(44), R2Y3P(44), R1Y3(44), R2D4(19), D3F1P(20), R2D5(1

29), F12(16), D312(20), R2D6(19), F23(16), D323(20), R2D7(19), F34(

316), D334(20), R2D8(16), F45(16)_ D345(20), R2D9(16)_ F56(16), D35

46(20), F67(13), R2F7(60), R3G8(60), G78(17), R478(60), R1F7(60),R

5267Z(60), R3G7(60), G67(20), R467G(63)_ RIF6(60), R256Z(63), R3G6(

663), G56(20), R456G(63), R1F5(63), R245Z(63), R3G5(63), G45(20), R

7445G(63). R1F4(63), R234Z(63), R3G4(63), G34(20), R434G(63), R1F3(

863), R223Z(63), R3G3(63), G23(20), R423G(63), R1F2(63), R212Z(63),

9 R3G2(63), G12(20), R412G(63), R1Fl(63), R2F1P(63), R3Gl(63)

DIMENSION R4G1P(63), Y1P(18), Y2P(18), Y3P(31)_ R245(16), R2Fl(16)

COMMON SAL, CAL, SCAL, TAL, A1, A2, A3, A4, A5, A6, AT, AS, A9, A1

10, All, A12, A13, A14, A15, A16_ A17, B1, B2_ B3, B4, BS_ B6, B7,

2B8, B9, B10, Bll, B12, B13, B14, B15, C1, C2, C3, C4, C5, C6, C7,

3C8, C9, C10, Cll, C12, C13, C14, C15, C16, C17, C18, C19, C20, ASQ

4, A4H, ST1, ST2, ST3, ST4, ST5, ST6, ST7, STS, ST9, ST10, STll, ST

512, ST13, ST14, ST15, ST16, ST17, ST18_ ST19, ST20, ST21, ST22, ST

623, ST24, ST25, ST26, ST27, ST28, ST29, ST30, ST31, ST32, ST33, ST

734, ST35, ST36, ST37, ST38, ST39, ST40, ST41, ST42, ST43, ST44, ST

845, D1, D2, D3, D4, D5, D6, DT, DS, D9, El, E2, E3, E4, E5_ E6, E7

9, E8, E9, El0, Eli, DIP, D2P, D3P, D4P, D5P_ D6P, DTP, D8P, D9P

C(_MM@N D1B, D2B, D3B, E1B, E2B, E3B, E4B, E5B, E6B, ETB_ FIB, F2B,

1F3B, F4B, F5B, F6B, FTB_ F1BP, F2BP, F3BP_ F4BP, F5BP, F6BP, F7BP,

2 R1, R2, alP, R2P, Y1, Y2, Y3, R1B, R2B, R3B, a4B, G1B, G2B, G3B,

3G4B, G5B, G6B, GTB, G8B_ G1BP, G2BP, G3BP, G4BP, G5BP, G6BP, G7BP,

4 G8BP, T1, T2, T3, W4, T5, T6, TT, TS, T9, D3E1, E4D1P, D3E2, D12P

5, E412P, D3E3, D23P, E423P, D3E5, E4D4P, D3E6, D45P, E445P, D3ET,

6D56P, E456P, D3ES, D67P, E467P, D3E9, D78P, E478P, D3E10, D89P, E4

789P, D3Ell, E4D9, D3BD4, D3E1B, D3BD5, D3E2B, D3BD6, D3E3B, D3BDT,

8 D3E4B, D3BDS, D3E5B, D3BD9, D3E6B, D3ETB, D1D3B, D1BD3, D2D3_, D2

9BD3, R2D1, R1PD2, R2D2_ a12, D312K_ RIY2, R2Y1, Y2PY3, Y2Y3P, Y1Y3

C@MM@N R2PY3, R2Y3P, R1Y3, R2D4, D3F1P, R2DS, F12, D312, R2D6, F23,

I
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1 D323, R2D7, F34, D334, R2D8, F45, D345, R2D9, F56, D356, F67, R2F

27, R3G8, G78, R478, R1F7, R267Z, R3GT, G67, R467G, R1F6, R256Z, R3

3G6, G56, R456G, R1F5, R245Z, R3G5, G45, R445G, R1F4, R234Z, R3G4,

4G34, R434G, R1F3, R223Z, R3G3, G23, R423G, R1F2, R212Z, R3G2, G12,

5 R412G, R1F1, R2F1P, R3G1, R4G1P

READ INPUT TAPE 5, 1, AL, DE1, DE2, DE3, ALl, AL2, AL3, P, Q, S@,

1GAM, H, A

WRITE OUTPUT TAPE 6, 402, AL, DE1, DE2, DE3, ALl, AL2, AL3, P, Q,

1S0, GAM, H, A

SAL = SINF(AL)

CAL = COSF(AL)

SCAL = ((SINF(AL))*(SINF(AL))) ((C@SF (AL))

TAL = SAL/CAL

AI = -(3.0*P*S@*SAL * .2)/(2.0*ALI*CAL)

A2 = AL2*SAL/AL1

A3 = -SAL

A4 = (2.0*P*S@*SCAL)/AL1

A5 = Q/(6. 2831852*S@*ALl*CAL)

A6 = A3

A7 = (P*S@*SCAL)/ALI

A8 = (3.0*P'S0)/(2.0*ALI*CAL)

A9 TM -(AL3/(AL1 *SAL))

A10 = -((3.0 *P* S@*TAL) / (2.0*ALl))

All = (AL2 + AL3)/ALI

A12 = -((ALl*GAM) + AL3)/AL1

AI3 = (P*S0*TAL)/(2.0*ALl)

AI4 = (3.0*P*S@*SAL)/(2.0*ALl)

AI5 = -(AL2 *CAL)/AL1

A16 = GAM. CAL
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A17 = -(P _:-'S@-_:-'SAL)/ALl

B1 = (2.0 *P _',-_S@*TAL)/ALl

B2 = -(AL2 + AL3)/AL1

B3 = -((GAM*AL1) + AL3)/AL1

B4 = (P_'.,S@-_:,TAL)/(2. 0*ALl)

B5 = -(2.0*P*S@*SCAL)/AL1

B6 = (AL3*SAL)/AL1

B7 = -(AL3 ;',_SAL)/AL1

B8 = (2.0_'_-'S@;','P_'.'SCAL)/AL1

B9 = Q/(6.2831852 _:-_S__',-'AL1 -':-'CAL)

B10 = -(AL3*SAL)/AL1

Bll = (P *S0 ;:,SCAL)/ALl

B12 = (3.0"-',-'P.S@)/(2. 0*ALI_:_CAL)

B 13 = - (AL2) / (ALl *SAL)

B14 = -(2. 0_I_P*S@)/AL1

B15 = (AL2)/(TAL*AL1)

C1 = -(AL2*CAL)/AL1

C2 = (5.0*P*S@*SAL)/(2.0* ALl)

C3 = -(GAM ;',-'CAL)

C4 : (P *S@ *SAL) /ALl

C5 = -(AL2) / (TAL ",,ALl)

C6 = (2.0*S@*P)/AL1

C7 = ((3.0*P-_:_Sq)_:-'CAL;',-'CAL) + (2. 0 ;',-'P_',-_S(_':-'SAL _:-'SAL))/(2. 0*ALl ;',-_CAL)

C8 = (AL2 _-"CAL ,:--CAL) / (ALl *SAL)

I
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C9 = (2. 0;'.-_P*S@*SCAL)/AL1

C10 = (H*H"._DE2*SAL)/(12.0*S@*S0*DE1)

Cll = B9

C12 = C9/2. 0

C13 = -C10

C14 = B12

C 15 = ((H *H *GAM *DE1) + (H *H ;'.-'DE2) -e (2.0 *H *H *DE3)'_ / (6.0 *S@ *S@ _'_DE 1 *S

1AL)

C16 =

C17 =

C18 =

C19 =

(2. 0*H;"H*SAL)/(12.0*S0*S(_)

-((GAM :.'-"H ;'.-"H *DE1) + (2.0 *H *H *DE3)) / (6.0 -"."S_b ::'SO *DE1 *SAL)

(H*H*SAL) /(12.0*S@*S@)

-C17

C20 = (H *H *DE2) / (12. 0 *SO *S@ *DE1 ,'-'(SAL"-'* 3))

WRITE OUTPUT TAPE 6, 404

WRITE OUTPUT TAPE 6, 405, A1, A2, A3, A4, A5, A6, AT, A8, A9, A10,

1 All, A12, A13, A14, A15, A16, A17

WRITE (_UTPUT TAPE 6, 407

WRITE @UTPUT TAPE 6, 405, B1, B2, B3, B4, B5, B6, B7, B8, B9, B10,

1 Bll, B12, B13, B14, B15

WRITE _bUTPUT TAPE 6, 408

WRITE @UTPUT TAPE 6, 405, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10,

1 Cll, C12, C13, C14, C15, C16, C17, C18, C19, C20

ASQ = A*A

A4H = ASQ_'-'ASQ
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ST1 = (C20*ASQ) - C15

ST2 = C10 - (ASQ*C17)

ST3 = C13 - (ASQ*C19)

ST4 = C5 *C5

ST5 = (C14*ASQ) - C7

ST6 = (C5*A10) + (C6*All)

ST7 = (C5 *A13) + (C6 *A12)

ST8 = A2 - (A9*ASQ)

ST9 = 2.0.C5.C6

ST10 = C2.C5

STll = C1.C6

ST12 = A1 - (A8*ASQ)

ST13 = C6.C6

ST14 = C3.C5

ST15 = C5.A12

ST16 -- C5*All

ST17 = C5 ;'-'A13

ST18 = C6.A13

Since the appearance of the program variables ST1, ST2, etc. will

undoubtedly appear confusing to the unsuspecting reader an explanation by

example will be given.

Consider the variable D1 which is defined earlier in the report as follows:

D i C i (A 5 C 1 .... 2= • - A_ c3) + ci (-_ c3) + A_ c_
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Substituting for the terms in terms of previously defined elements, the

equation becomes :

1 1

DI= (cl--+e2)s [(-a12n-alznS) _2 - (- - alln--1 _ a_on)(-csn-_- ncs) ]
S s

_ 1+(_ c, ) (a,_n+ a,,ns) ( -c_ n=- no_)+
--2 SS

[(a2- a_n 2) 1
S

+ ( al a8 n2)] ( c5 n 1 2- _ __ ncs)
S

A complete algebraic expansion will result in an equation consisting of 28

terms as follows:

D 1 Cl a12 c 5 n 2 c 2 a12 c 5 n 2 c I a13 c5 n 2 n 2= .... c 2 a13 c S

-3 _2 -2 -
s s s s

c5 n 2 2 2
Cl all c 5 n2 e 2 all e 5 n c I alo c 5 n c 2 at0

-3 -2 --2 --
s s s s

n 2 2c I all n 2 c 6 _ c 2 all c6 _ c ! alo n c 6

w 2 _ __

S S S

- c_ alon_ c_

2 2 2 2
+ a12 n c 5 c I + c I a13 n c 5 + c I a12 n c 8 + c I a13 n c 8

--3 -- 2 --:2 --
S S S S

2 2 2 2 2 2 2 2
+ a s c 5 n + 2 c s n c 8 a s + a 2 c e n _ agn es n

S 3 --2 -- --3S S S

2 4 2 2 2 2
2 a 9 n czn2c8 a9 n c8 a.jc5 n 2 a I c$ C5 n

- + +
--2 -- --3 --
S S S S

4-

4 2 4
2 2 aB n c s 2 a B n c 6 c s 4 2

a_ c8 n - - - a8n ca
S
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A grouping of coefficients will be:

Term Coefficient

-- - :: 2 2 + n 2 2 2 4 2
S - c I a12 c 5 n - c 5 n c I all a12 c 5 c I + a 2 c 5 n - a 9 n c 5

-- -2 2 2 2 2 2

s - c 2 a12 n C5 - c5 n c 2 a n c 5 n c i at0 - c I all n c 6 + c I a12 n c 6

2 4 2 2 4 2

+ 2 c5 n c6 a2 - 2 a9 n c5 cs + aI c5 n - a8 n c5

-- -I 2 2 2 2 2 _.
S - C 5 n c 2 alo - c 2 all n c 6 - c I alo n c 6 + c I a13 n c 6 + a 2 c 6 n

4 2 4 2 2
- a 9 n c6 - 2 a 8n c_ c 5+ 2 c 5 c 6 a_ n - c 2 c 5 a_3 n

-- 0 2 2 2 4 2

S - C 2 alo n c 6+ a I c 6 n - a 8n c 8

As mentioned earlier the subscript (]:) corresponds to the lowest power of

_: the highest subscript corresponds to the highest power of _. With this

notation in mind it is clear that DI(1) is the coefficient of g - s , DI(2) is the

coefficient of s " _ , etc. Referring to the FORTRAN I I source program the

variables are written:

DI(1) = (ST4*ASQ*(A2 - (A9*ASQ))) - CI*C5,:,All*ASQ)

Dl(2) = ASQ*(((ST4*(A1 - (AS*ASQ)))) + (ST9*STS)

- (CI*ST6) - (STI0*AI2)+ (STII*AI2))

Dl(3) = ASQ*((C6*C6*ST8)+ (ST9*ST12) - (STll*A10)

- (C2.ST6) - (ST10*A13) + (STll*A13))

Dl(4) = ASQ*((ST13*ST12) - (C2.C6.A10))

Substituting for the ST - ten-ms as defined in the SOURCE PROGRAm. and

expanding, it is seen that the terms are as follows :
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DI(1) - coefficient of

DI(2) - coefficient of g- 2

DI(3) - coefficient of _ -_i

DI(4) - coefficient of Y- o

With the aforementioned example for the solution of the term D,,

it should be intuitively obvious to the reader that the ST - terms are

characteristic terms employed to facilitate the solution of equations de-

fining DI(1) through D9(3).

The reader may now proceed with the SOURCE PROGRAM.

DI(1) = (ST4*ASQ*(A2 - (Ag*ASQ))) - (CI*C5*AII::.ASQ)

DI(2) = ASQ*(((ST4:',-'(AI - (A8*ASQ))))+ (ST9*ST8) - (CI*ST6) - (STI

10*All) - (STI0*AI2)+ (STll ::-'AI2))

DI(3) = ASQ:_((C6*C6*ST8) + (STg*STI2) - (STII*AI0) - (C2.ST6) - (S

ITI0*AI3) + (STII*AI3))

DI(4) = ASQ*((STI3 ::.STI2) - (C2:',.C6*AI0))

D2(1) = ASQ*((ST4*A3) - (STI4 :',,All)- (CI ::,STI5) - (STI4 ::-'A12))

D2(2) = ASQ*((ST9 ::-'A3)+(ST4_',.A4)- (C3 *ST6) - (C4.C5 :',-'All)- (CI ::-'S

IT7) - (STI0*A12) - (C4.ST15) - (ST!4*AI3) - (C4.ST15))

D2(3) = ASQ*((ST9*A4)+ (ST13*A3) - (C3.C6.AI0) - (C4.ST6) - (STll

1 *AI3) - (C2.ST7) - (C4 *ST7) - (C4 *C5 *AI3))

D2(4). = ASQ*((STI3*A4) - (C4.C6:','A10) - (C2.C6.A13) - (C4.C6.A13))

B32
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D3(1) .--.ST4*ASQ*A5

B 33

D3(2) = ASQ*((ST4*A6)+(ST9*A5)- (ST14*A12))

D3(3) = ASQ*((ST9*A6) + (ST4*A7) + (STI3*A5) - (C3.ST7) + (C4.ST15

i))

D3(4) = ASQ*((STg*A7) + (ST13*A6) - (C3.C6.A13) - (C4.ST7))

D3(5) = ASQ*((ST13*AT) - (C4,C6.A13))

D4(1) = A4H*((STI6*STI) + (STI5*STi) - (3.0*STI5*STI))

D4(2) = A4H*STI*(ST6 + ST17 - (3.0*ST7))

D4(3) = ASQ*((-ST4*A15) + (ASQ*C6*A10*ST1) + (ST16.C8) + (ST15* C8)

1 - (3.0 *ASQ*C6 *A13 ,:-'ST]) - (ST15 * C8))

D4(4) = ASQ*((-ST4*A14) - (ST9*AI5) + (C 8"ST6) - (STI6*ST5) + (C8"

1ST17) - (STI5*ST5) - (C8 *STT))

D4(5) = ASQ*((-ST9*A14) - (ST13*A15)+ (C 8.C6,A10) - (ST5*ST6) - (

IST17*ST5) - (C6,C 8.A13))

D4(6) = -ASQ*((ST13*A14) + (C6*A10,ST5))

I

!
I

D5(1) = ASQ*(((All + A12)*C5*ST2) + (ASQ*ST15*ST1) - (2.0*ST15*ST2

1))

D5(2) = ASQ*(((ST6 + ST17 - (2.0*ST7))*ST2) + (ASQ*STI*STT))
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D5(3) = ASQ-_',-_((-ST4*A16) ÷ ((A10

1ST15))

B 34

t_r
2.0 ",'A13),:,C6*ST2) + ,,_r18 ,',-'STI)+ (C8 .',-"

D5(4) = ASQ*((-ST4*A17) - (ST9*AI6) + ((All + (2.0.A12))*C5.C9) ÷

I(C8.ST7) - (STI5*ST5))

D5(5) = ASQ*((-ST9;:-'AIT) - (STI3*AI6) + (C9:::ST6) ÷ (ST17.C9) + (STI

1/', ;','-C8) - (ST5 _":-STT) + (C9 ;:-'STT))

D5(6) = ASQ*((-ST13*A17) + (C6.C9.A10) - (ST18*ST5) + (ST18.C9))

D6(1) = ASQ*((ST16 .',-_ST3) + (ST15 ",-_ST2))

D6(2) = ASQ.',-'((ST3*ST6) + (ST16*Cll ÷ (ST17*ST3) ÷ (ST15*Cll) + (S

1T2 _:-_STT) - (ST7 *ST3))

D6(3) = ASQ;',-'((C6"*A10*ST3) + (Cll *ST6) ÷ (ST17 ;l-'Cll) + (ST18 *ST2) -

I(ST18 *ST3))

D6(4) = ASQ*((C6*Cll*A10) + (ST16;'.-'C12) (ST15.C12) + (ST15.C9) +

1(2.0.ST15.C12))

D6(5) = ASQ.:-'((CI2*ST6) + (ST17.C12) ÷ ((C9 + (2. 0.C12))*STT))

D6(6)

DT(1)

D7(2)

D7(3)

D7(4)

D7(5)

D7(6)

D8(1)

D8(2)

= ASQ ;','((C6 *C12 *A10) + (C6 ;:-'A13 *(C9 + (2.0 *C12))))

= ASQ*((ST16*C16) + (ST15.C16) + (ST15*ST3))

= ASQ*((C16*ST6) + (ST17.C16) + (ST3*STT) ÷ (ST15*Cll))

= ASQ*((C6*A10*C16) + (ST18 *ST3) + (Cll*ST7))

= ASQ*((CII*STI8) + (C12.ST15))

= ASQ*C12*ST7

= ASQ*C12*ST18

= ASQ*((C18*ST16) + (C18.ST15) + (C16"ST15) + (C18 *ST15))

= ASQ*((C18 *ST6) + (C18 *ST17) + (C16 *STT) + (C18 *ST"/))
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D8(3) = ASQ*((C6*AI0*CI8) ÷ (C16.ST18) + (C18 *ST18))

D9(1) = ASQ_',_C18 *ST15

D9(2) = ASQ*C.18*ST7

D9(3) = ASQ*C15 *STS.B

WRITE (_UTPUT TAPE 6. 410

WRITE OUTPUT TAPE 6, 405, D1

WRITE OUTPUT TAPE 6, 405, D2

WRITE @UTPUT TAPE 6. 405, D3

WRITE OUTPUT TAPE 6, 405, D4

WRITE @UTPUT TAPE 6, 405, D5

WRITE _bUTPUT TAPE 6, 405, D6

WRITE (_UTPUT TAPE 6, 405, D7

WRITE @UTPUT TAPE 6, 405, D8

WRITE @UTPUT TAPE 6, 405, D9

ST19 = C1.C5

ST20 = All + A12

ST21 = C5.C6.B9 + B10.C5.C5

ST22 = A13 ".-_B9 + A12 *B10

ST23 = All*B10 + A10* B9

ST24 = B6 - ASQ*B13

ST25 = C5.C6.B10 + Bl1.C5.C5

ST26 = 2. 0 *C5 *C6 ;'.-'B7 + C5 ;'.-'C5 *B8

ST27 = A13*B10 + A12*Bll

ST:.B = All*Bll + A10*B10

B35

I



ST2C_ = B5 - ASQ*B12
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ST30 _- 2.0 *C5 -'::C6 *B8 + C6 ;',-_C6* B7

ST31 = A13*Bll + A10*Bll

ST32 = C2 + 2.0.C4

ST33 = A14 *C5 + A15-'.'-'C6

ST34 = -2.0.C5

ST35 = C5.C5.A14 + 2.0"C5"C6.A15

ST36 = C6.A14

ST37 = A17.C5 - A16.C6

ST38 = 6.0*(ST2 - ASQ*ST1)

ST39 = C5.C5.A17 + 2.0.C5.C6"A16

ST40 = 2.0.C5.C6.A17 + ST13*'A16

ST41 = STI*ASQ - 4.0*ST2 + 2. 0*ST3

ST42 = 2.0.(C9 + C12)

ST43 = ST2- 2.0.ST3
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ST44 = C9 + 4.0.C12
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ST45 = C16 + 2.0* C18

The reader's attention is directed to the terms ST19 through ST45.

These terms are employed to facilitate the solution of equations defining

El(l) through Ell(4). It is felt that an example for El(l), similar to the

example for DI(1) stated earlier, would serve no purpose at this point in

the reader's understanding of the SOURCE PORGRAM.

The reader may now continue with the SOURCE PROGRAM.

El(l) = ASQ*((2.0*ST4*B9*ST8) - (2. 0*ST19*B9*ST20)+ (2.0*ST19*A12

1 *B9))

El(2) = ASQ*((ST8 *(2.0*ST21 + ST4*BT)) + (ST12.2.0*ST4*B9) + (2.0*

1CI*(ST15*B10 + B9*STT)) + (ST4*A12*B2*ASQ) + (C1.C5.(-2. 0.(ST22 -S

2T23) - All*B7 + A12*ST24)) - (2.0*C2*C5*Bg*ST20))

El(3) = ASQ*((ST8 *(2.0.ST25 + ST26)) + (2.0*CI*(ST15*Bll + B10*ST7

1 + ST18*B9)) + (ST12.(2. 0*ST21 + ST4*BT)) + (B2*(C5*ST7 + C6.ST15)

2 *ASQ) + (C1 :'.'(-2.0 *C5 *(ST27 + ST28))) + (C1 *((ST15 *ST29) + (ST7 *ST2
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34) - (BT*ST6) _ (ST16*B8)))+(C2,C5,(((_2.0,ST22+2.0,ST23)) - A

411 :_:B7 + A12 *ST24)))

El(4) = ASQ*((ST8*(ST9*Bll+ST30))+(ST12,(2.0*ST25+ST26))+ (

12. 0 *C1 *(B11 *ST7 + STI_' *B10)) + (ASQ *B2 *(ST17 *C5 ÷ C6 *STT)) + (ASQ*

2B1 *(C5 *ST7 + ST15 *C6)) + (C1 *(-2.0 *C5 *(ST31 + ST7 *ST29) ÷ STI_:_ *ST2

34 - B_*ST6 - C6*A10*BT))+ (C2,(-2.0*C5*(ST27+ST28) + ST15*ST_9

4+ STT*ST24 - BT*ST6 - C5*All*B8)))

El(5) = ASQ*((ST8 *ST13 *BS) + (ST12 *(ST9 *Bll + ST30)) ÷ (ASQ*(B2 *ST

113"A13+ Bl*(C5*ST18+C6,STT)))+(STll,(A13,ST29 -A10*B8))+ (C

22 *(-2.0*C5*(ST31+ST7*ST29)) + (ST18 *ST24) - (B8*ST6) - C6*A10*B

37)+ 2.0*CI*ST18*Bll)

El(6) = ASQ*(ST12*ST13*B8+B1,ST13,A13,ASQ+C2,C6,(A13,ST29 - A1

10 *B8))

E2(1) = ASQ*(2.0*ST4*B9*A3 -2.0*C5*Bg*ST20*C3 - 2. 0*ST19*A12*B9)

E2(2) = ASQ*(A3 -':'(2. 0 *ST21 + ST4 *BT) +A4 *2. 0 *ST4 *B9 ÷ ST4 *A12 *B3 *A

1SQ+ ST14,(-2.0,ST22+ 2.0,ST23 -All*B7+A12,ST24) - 2.0,C4,C5,B

29_':ST20 _ 2.0*CI*(ST15*B10 + B9*STT))

E2(3) = ASQ*(A3 *(2.0 *ST25 + ST26) + A4 *(2. 0 *ST21 + ST4 *BT) + B3 -'-"(C

15 *ST7 + C6 *ST15) *ASQ+ B4 *ST4 *A12 *ASQ+ C3 *(-2. 0 *C5 *(ST27 + ST28_

2+ ST15*ST29+ STT*ST24- BT*ST6 - ST16*B8)+C4*C5*(2. 0,(-ST22+ S

3T23) -All*BT+A12*ST24) - 2.0*CI*(ST15*Bll+B10*ST7+ST18,B9))

E2(4) _' ASQ*(A3*(ST9,Bll+ST30)+A4,(2.0*ST25+ST26)+ASQ*(B3,

1(C5,ST18+ C6,ST7)+ B4*(C5*STT+C6*ST15))+C3,(-2.0,C5,(ST31 +

2 STT*ST29)+ ST18 *ST24- B8*ST6 - C6*A10*BT) ÷C4,(-2. 0,C5,(ST27 +

I
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3 ST28) + ST15 *ST29 + ST7 *ST24 - B7 *ST6 - ST16 _'._B8) - 2.0*C1 *(Bll *ST

47 + STI_ _':B10))

E2(5) = ASQ*(A3*ST13*B8+A4*(ST9,Bll+ST30)+ASQ,(B3,ST15,A13 ÷

1 B4*(C5*ST18 + C6*ST7))+C3*C6*(A13*ST29 -A10*B8) + C4,(-2.0"C5,

2(ST31+ ST7*ST29)+ST18 *ST24 - B8 *ST6 - C6*A10;:-'BT) - 2.0*STll*A13

3 *Bll)

E2(6) = ASQ*(A4*ST13*B8 + B4*ST13*A13*ASQ+C4*C6,(A13,ST29 - A10*

IS8) *2.0)

E3(1) = ASQ*ST4*B9*A5*2.0

E3(2) = ASQ*(2.0*A6*ST4*B9+A5,(2. 0*ST21÷ ST4*BT)÷CI*ST15,B9)

E3(3) = ASQ *(2.0 *AT *ST4 *B9 + A6 ;:'(2. 0 *ST21 + ST4 *BT) + A5 *(2.0 *ST25

1+ ST26)+ CI*(ST15*B10+ B9*ST7)+ ST32*ST15*B9)

E3(4) = ASQ*(A7*(2.0*ST21+ ST4*BT)+A6*(2.0*ST25+ST26)+AS,(S

1T9*Bll+ST30)+ CI*(ST15*Bll+ B10*STT+ST1 *B9) + ST32*(ST15*B1

20 + B9 *ST7))

E3(5) = ASQ *(AT *(2.0 *ST25 + ST26) ÷ A6 ;:-'(ST9 *B11 + ST30) ÷ A5 *ST13 *

1BS+ C1;'._(Bll*ST7+ST18,B10)+ ST32*(ST15*Bll÷B10,ST7+ST18,B9)

2)

E3(6) = ASQ*(AT*(ST9*Bll+ST30)+A6,ST13,B8+STll,A13,Bll+ ST3

12*(Bll*STT+ ST18*B10))

E3(7)

E4(1)

E4(2)

E4(3)

= ASQ*(A7*ST13*B8+ST32,ST18,Bll)

= ASQ*C3*ST15*B9

= ASQ*(C3*(ST15,B10+B9,STT)+ C4*ST15*B9)

= ASQ*(C3*(ST15 _:Bll+ B10*ST7+ ST18*B9)+ C4*(ST15*B10+ B9
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ASQ*(C3 *(B11 *ST7 + ST18 *B10) + C4 *(ST15 *Bll + B10 *ST7 ÷ ST

118 *B9))

E4(5) = ASQ*(C3*ST18*Bll+ C4*(Bll*STT+ST18 *B10))

E4(6) = ASQ*C4*ST18*Bll

E5(1) A4H ;'(2. 0 *C5 *B9 *ST20 *ST1 + 12.0 *ST1 *ST15 *B9)

E5(2) = A4H*STI*(-C5*(-2.0":-'(ST22- ST23) All*BT÷A12*ST24)+ 12

1.0*(ST15*B10+ B9*ST7))

E5(3) = ASQ*(-2.0*A15*ST4*B9- STI*(-2. 0*C5*(ST26+ST28)+ST15,S

1T29+ ST7*ST24 - B7*ST6 - ST16*B8) - 2. 0*C_'.*C5*B9*ST20+ 12. 0*ASQ*

2STI*(ST15*Bll+ B10*STq+ST18*B9)+2. 0*C8*ST15*B9)

E5(4) = ASQ*(-2.0*C5*(B10*A15*C5+B9,ST33) - ST4*A12*B15,ASQ- ST4

l*A15*B7 - (STI*(-2. 0*C5*ST31+STq*ST29+ST18,ST24 - B8*ST6 - C6,

2A10 *BT) +c3,C5 *(-2. 0 *(ST22 - ST23) - All *B7 +A12 *ST24) + ST5 :'.'2.

30 *C5 *B9 *ST20) + 12. 0 *ASQ*ST1 *(B11 ;'.ST'/+ ST18 *B10) ÷ 2. 0 *C8 *(ST15 *B

410+ B9 *STT))

E5(5) = ASQ*(ST34*(Bll*A15,C5+ B10*ST33+B9*C6*A14) -ASQ*(B15*(

1C5,ST7+ C6,ST15)+ B14*ST4*A12) - BT*ST35 - B8*ST4*A15 - (STI*C6*

2(A13 *ST29 - A10 *B8) + C8 ;'.(ST34 *(ST27 + ST28) + ST15 *ST29 + ST7 *ST2

34 - BT*ST6 - ST16*B8) - ST5,C5,(-2.0"(ST22- ST23) -All*Bll+A12

4,ST24))+ 12. 0*ASQ*STI*ST18*Bll+ 2. 0*C8*(ST15*Bll+ B10*STT+ ST1

5g *B9))

E5(6) = ASQ*(ST34*(Bll,ST33+B10,ST36) -ASQ*(B15*(C5,ST18 + C6,S

1T7)+ B14*(C5*ST7+C6,ST15)) -BT*(ST9,A14+ ST13*A15) - B8*(ST4*



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

B 41

2A14++ST9*A15) - (C8*(ST34*ST31-+ STT*ST29+ST18 *ST24 - B8*ST6 -

3C6*A10*B7) - ST5 +:(ST34 +:(ST27+ST2 )+ST15*ST29÷STT.ST24 - BT*S

4T6 - ST16*B8))+ 2.0*C8*(Bll*STT+ST18 *B10))

E5(7) = ASQ*(-ST9*A14*Bll -ASQ*(B15*ST13.A13+B14.(C5,ST18+ C6.

1STT)) - BT*ST13*A14 - B8*(ST9*A14+ST13*A15) - (C6*C8*(A13*ST29 -

2 A10* ]38)- ST5*(ST34*ST31+STT.ST29+ST18 *ST24 - B8*ST6 - C6*A10

3"B7))+ 2.0*C8*ST18*Bll)

E5(8) = ASQ *(-ASQ ",-_B14 *ST13 *A13 - B8 *ST13 *A14 ÷ C6 *ST5 *(A13 *ST29 -

1A10 *B8))

E6(I} = ASQ*(ST2*2.0*CS*B9*ST20+6.0*ST15*B9*(ST2 -ASQ*ST1))

E6(2) = ASQ*(-C5 *ST2*(-2. 0.(ST22 - ST23) -All*BT÷A12.ST24)+ 6.

10 +:(ST2 - ASQ*ST1) *(ST15 *B10+ B9 *STT))

E6(3) = ASQ *(ST34 *C5 *A16 *B9 - ST2 *(ST34 *(ST27 + ST2:: ) + ST15 *ST29

1+ STT*ST24 - B7*ST6 - ST16*B8)+ 6.0*(ST2 -ASQ*ST1)*(ST15.Bll+ B

210 _',-_ST7+ STI_ *B9) + ST34 *C8 *A12 *B9)

E6(4) = ASQ*(ST34 *(B9 _':,ST37 + B10 *C5 *A16) - B7 *ST4 *A16: - (ST,? ;'-'(ST34

1 *ST31 + ST7 *ST29 + ST18 *ST24 - B8 *ST6 - C6 *A10 ,'.-"B7 ÷ ST34 *C9 *B9 ,'.-'ST

220)+ ST38 *(Bll*STT+ ST18 *B10) - 2.0*C8*(ST15*B10+ B9*STT))

E6(5) :_ ASQ*(ST34.(B9,C6,A17+ B10*ST37+Bll*C5*A16) - BT*ST39 -

1B8 :_',-_ST4*A16 - (C6 *ST2 *(A13 *ST29 - A10 *B8)) + C9 *C5 *(-2.0 *(ST22 - ST2

23) - All*B7+A12*ST24)+ST3_ *ST18 *Bll - 2.0*C8*(ST15*Bll+ B10*S

3T7 + ST18 *B9))

E6(6) = ASQ*(ST34*(B10*C6,A17 + Bll _ ST37) - B 7 _ ST40 - B8 _ ST39 - C9

1 +:(ST34*(ST27+ ST28)+ ST15*ST29+ST7,ST24 - BT*ST6 - ST16*B8) -
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22.0 _;_C8*(Bll _',':ST7 + ST18 *10))

E6(7) : ASQ_(-ST9,'_A17*Bll - BT*ST13*A17 - B8*ST40 - C9*(ST34*ST31

1+ ST7 _":ST29 + ST18 "-_ST24 - B8 *ST6 - C6 "-'A10 *BT) - 2.0 *C6 *C8 ",'A 13 *Bll)

E6(8) = ASQ*(-B8*ST13*A17 - C9*C6*(A13*ST29 -A10*B8))

ET(1) _: ASQ _',(ST3 :_2 _ ',_C5 *B9 *ST20+ (ST1 *ASQ - 4.0 *ST2÷ 2. 0 *ST3) ,',-'ST

115 *B9)

E7(2) = ASQ*(-ST3*C5*(-2. 0"(ST22 - ST23) -All*B7+A12,,ST24) - C1

11 *ST34 *B9 *ST20+ ST41 *(ST15 *B10+ B9 *STT))

E7(3) = ASQ *(-ST3 _"_(ST34 '_-_(ST27 + ST28) + ST15 ",'ST29 + ST7 *ST24 - B7 *

1ST6 - ST16*B8) - Cl1.C5.(-2. 0'(ST22 - ST23) -All*BT+A12*ST24)+

2ST41 *(ST15 *Bll + B10 *ST7 + ST18 *B9) + C8 *ST15 _,_B9)

E7(4) = ASQ ,',-'(-ST3 *(ST34-",'ST31 + ST7 *ST29 + ST18 *ST24 - B8 *ST6 - C6 *

1A10*B7) - Cll*(ST34*(ST27+ ST28)+ST15*ST29÷STT*ST24 - BT*ST6

2- C5 ",'All *B8) + 2.0'-'C5 *C12 *B9 *ST20+ ST41 *(Bll *ST7 + ST18 *B10) + C8

3 *(ST15 *'B10+ B8 *ST7) + (ST42 - ST5) *ST15 *B9)

E7(5) : ASQ*(-ST3*C6*(A13*ST29 - A10*B8) - Cll*(ST34*'ST31+STT.ST

129 + ST18 *ST24 - B8*ST6 - C6*A10*BT) - C5.C12.(-2.0_-'(ST22 - ST23)

2- A11 _-_B7 + A12 *ST24) + ST41 *ST18 *Bll + C8 "-'(ST15 *A11 + B10 *ST7 + ST

31_ "_'B9) + (ST42 - ST5) *(ST15 *B10+ B9 *STT))

E7(6) = ASQ*(-Cll*C6.(A13.ST29 -A10*B8) - C12*(ST34*(ST27+ST28)

1 + ST15*ST29+ STT*ST24 - B7*ST6 - ST16*B8)+C8*(BII*ST7+ ST18,-'B

210) + (ST42 - ST5):-_(ST15 *Bll + B10 ;'-'ST7 + ST18 ;'-'B9))

E7(7) = ASQ*(-C12*(ST34.ST31+STT.ST29+ST18 *ST24 - B8*ST6 - C6;-"

1A10 _"BT) + C8*ST18*Bll + (ST42 - ST5) ;"(B11 *ST7+ ST18 *B10))
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E7(8) :_

E8(1) _:

E8(2) =
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ASQ*(-C12*C6*(A13*ST29 - A10*B8)+(ST42 - ST5)*ST18*Bll)

ASQ*(2.0 *C16 *C5 *B9 *ST20÷ ST43 *ST15 *B9)

ASQ*(-C16 *C5 *(-2.0 *(ST22 - ST23) - All :'.-'B7 +A12 *ST24)+ ST

143 *(ST15 *B10+ B9 *STT))

E8(3) = ASQ*(-C16*(ST34*(ST27+ST28)+ST15.ST29÷STT.ST24 - BT*

1ST6 - ST16 ",-_B8) + ST43 *(ST15 *Bll + B10 *ST7 + ST18 *B9))

E8(4) = ASQ*(-C16*(ST34*ST31+ STT*ST29+ST18*ST24 - B8*ST6 - C6.

1A10 *B7) + ST43 *(Bll *ST7 + ST18*B10) + ST44 *ST15 *B9)

E8(5) = ASQ :",,(-C 16 *C6 *(A13 *ST29 - A10 *B8) + ST43 *ST18 *Bll + ST44 *(S

1T15 *B10+ B9 ;'._ST7))

E8(6) = ASQ*(ST44*(ST15*Bll+B10.ST7+ST18.B9))

E8(7) = ASQ*ST44*(Bll*ST7+ST18*B10)

E8(8) = ASQ*ST44*ST18*Bll

E9(1) = ASQ*(2. 0*C18*C5*B9*ST20+ST3*ST15*B9)

E9(2) = ASQ*(-C18*C5*(-2.0.(ST22 - ST23) -All*BT+A12*ST24)÷ ST

13*(ST15*B10+B9*ST7)+ Cll*ST15*B9)

E9(3) = ASQ*(-C18*(ST34*(ST27÷ ST28) +ST15*ST29+STT*ST24 - BT*

1ST6 - ST16*B8)+ ST3*(ST15*Bll+ B10*STT+ST]8*B9)+Cll*(ST15*B1

20 + B9*STT))

E9(4) = ASQ*(_C18*(ST34*ST31+ ST7*ST29+ST18*ST24 - B8*ST6 - C6.

1A10*B7)+ ST3*(Bll*STT+ST18*B10)+ Cll*(ST15*Bll÷B10*STT+ ST1

28 *B9) + C12 *ST15*B9)

E9(5) = ASQ*(-C18.(C6.(A13,ST29 -A10*B8))+ST3*ST18*Bll+ Cll*(B

lll*ST7+ STI8*B10)+ C12*(ST15*B10+ B9*ST7))
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E9(6) :: ASQ _',_(Cll _',-':STI8*Bll + C12 *(ST15 *Bll+B10 *ST7 ÷ ST18 *B9))

E9(7) :: ASQ*C12 *(Bll _'.-'ST7 + ST18 *B10)

E9(8) = ASQ_'C6 *C12 *A13 *Bll

El0(1) = ASQ*ST15 :'.-'B9 *ST45

El0(2) = ASQ ;'.-'ST45 *(ST15 ".-'B10 + B9 *STT)

El0(3) = ASQ*ST45 _',-_(ST15 *Bll + B10 *ST7 + ST18 *B9)

El0(4) = ASQ*ST45 *(Bll *ST7 + ST18 *B10)

El0(5) = ASQ ;'.'-ST!8 *Bll ;'.-'ST45

Ell(l) = ASQ;'.-_ST15 *B9._C18

E11(2) = ASQ *C18 *(ST15 _',-'B1C + B9 *STT)

Ell(3) = ASQ;'.-'C18*(ST15 *Bll+B10*ST7+ST18 *B9)

Ell(4) = ASQ -".-'C18*(B11 ;:-'ST7 + ST18 *B10)

Ell(5) = ASQ*ST18*Bll*C18

WRITE _bUTPUT TAPE 6, 413

WRITE _bUTPUT TAPE 6, 405, E1

WRITE _bUTPUT TAPE 6, 405, E2

WRITE _bUTPUT TAPE 6, 405, E3

WRITE _bUTPUT TAPE 6, 405, E4

WRITE _bUTPUT TAPE 6, 405, E5

WRITE (bUTPUT TAPE 6, 405, E6

WRITE _bUTPUT TAPE 6, 405, E7

WRITE (_UTPUT TAPE 6, 405, E8

WRITE @UTPUT TAPE 6, 405, E9

WRITE (_UTPUT TAPE 6, 405, El0
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C

WI_TE (_UTPUT TAPE 6, 405,

D_FFERENTL/kTE D

BETA = -3.0

D@2J= 1, 4

DIP(J) = DI(J),:-'BETA

2 BETA = BETA + 1.0

BETA = -2. 0

D@3J= 1, 4

D2P(J) = D2(J) ;'-'BETA

3 BETA = BETA + 1.0

BETA = -2.0

D@4J = 1, 5

D3P(J) = D3(J)*BETA

4 BETA = BETA + 1.0

BETA = -5.0

D(_5J = 1, 6

D4P(J) = D4(J) ;'.,BETA

5 BETA = BETA + 1.0

BETA = -4.0

D_b6J = 1, 6

D5P(J) = D5(J)*BETA

6 BETA = BETA + 1.0

BETA = -3.0

D@TJ= 1, 6

Ell

B 45



I

I
I

I

I
I

I
I

I
I
I

I

I

I

I

I

I

I
I

C

D6P(J) = D6(J)*BETA

7 BETA _:, BETA + In 0

BETA = -2.0

D@8 J=l, 6

DTP(J) = DT(J)*BETA

8 BETA = BETA + 1.0

BETA = -1.0

D@9J= 1, 3

DBP(J) = DB(J)*BETA

9 BETA = BETA + 1.0

BETA = 0.0

D@ 10J= 1, 3

D9P(J) = D9(J)*BETA

10 BETA = BETA + 1.0

D1B

D@ll J= 1, 10

11 D3EI(J) = 0. 0

K=I

D@ 12I= 1, 5

D@13J = 1, 6

D3EI(K) = D3EI(K) ÷ (D3(I)*EI(J))

13K=K+I

12K:I+I

D(_14J= 1, 9
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14 E4D1P(J) = 0. 0

K=I

D0 15I= 1, 6

D@ 16 J = 1, 4

E4DIP(K) = E4DIP(K) + (E4(I)*DIP(J))

16 K=K+I

15 K=I+I

D1B(1) = D3EI(1)

I=2

D@ 17 J= 1, 9

D1B (I) = D3EI(I)-E4D1P(J)

17I=I+l

D2B

D_b18 I = 1, 10

18 D3E2(I) = 0. 0

K=I

D@ 19 I = 1, 5

D_ 20 J = 1, 6

D3E2(K) = D3E2(K) + (D3(I)':,E2(J))

20K=K+I

19K=I+I

D(_21I= 1, 4

21 D12P(I)= DI(I)+ D2P(I)

D@ 22I= 1, 9
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C

22 E412P(1) = 0. 0

K_I

D@ 23 I _- i, 6

D@ 24 J = l, 4

E412P(K) = E412P(K) ÷ (E4(I)*D12P(J))

24K=K+l

23 K=I+I

D2B(1) = D3E2(1)

I=2

D_b 25 J = i, 9

D2B(1) = D3E2(I) - E412P(J)

25 I=I+l

D3B

DO 26 I = 1, 11

26 D3E3(I) = 0.0

D0 27 I = 1, 5

D@ 28 J = 1, 7

D3E3(K) = D3E3(K) + (D3(I)*E3(J))

28K=K+l

27 K::I+I

D23P(1) : D3P(1)

I_2

D(h 29 J = 1, 4

D23P(I) = D2(J)+ D3P(I)
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29 i[=I+I

D(_ 30 I = i, I0

30 E423P(!) = 0.0

K=I

D@31I= 1, 6

D@32J = 1, 5

E423P(K) = E423P(K) ÷ (E4(I)*D23P(J))

32K=K+l

31K=I+I

D3B(1) = D3E3(1)

I=2

D_b 33 J = 1, 10

D3B(I) = D3E3(I) - E423P(J)

33I=I+1

E1B

D_ 34 I = 1, 12

34 D3E5(I) = 0. 0

K=I

D035 I= 1, 5

D@36 J = 1, 8

D3E5(K) = D3E5(K) + (D3(I) *E5(J))

36K=K+l

35 K=I+I

D037 I_ 1, 11
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37 E4D4P(1) = 0. 0

K=I

DQ38 I= 1, 6

D@39J = 1, 6

E4D4P(K) = E4D4P(K) + (E4(I) *D4P(J))

39K=K+l

38K=I+1

E1B(1) = D3ES(1)

I=2

D040J= 1, 11

E1B(I) = D3E5(I) - E4D4P(J)

40I=I+1

E2B

DO 41 I = 1, 12

41 D3E6(I) = 0. 0

K=I

D(_42I= 1, 5

D(_ 43 J = 1,8

D3E6(K) = D3E6(K) + (D3(I) *E6(J))

43 K:_K+I

42K=I+1

DO 44 I = 1, 6

44 D45P(!) = D4(I) + D5P(I)

D@45 I= 1, 11
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45 E445P(D :-0. 0

K=I

D_ 46 I = 1, 6

D_ 47 J = 1, 6

E445P(K) = E445P(K) + (E4(I) _'_-_D45P(J))

47 K=K+I

46K=I+1

E2B(1) = D3E6(1)

I=2

D0 48J= 1, 11

E2B(I) = D3E6(I) - E445P(J)

48I=I+1

C E3B

D@49I= 1, 12

49 D3ET(I) = 0. 0

K=I

D@50I_: 1, 5

D@51 J= 1,8

D3ET(K) = D3ET(K)+ (D3(I) _:-'ET(J))

51K=K+I

50K=I+1

D@52 I= 1, 6

52 D56P(l)- D5(I)+ D6P(I)

DO 53 I_ 1, 11
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53 E456P(1) = 0. 0

K=I

D054I= I, 6

D@55 J = 1, 6

E456P(K) = E456P(K) + (E4(I)*D56P(J))

55K=K+l

54K=I+1

E3B(1) = D3ET(1)

I=2

D_b 56 J = 1, 11

E3B(I) = D3E7(I) - E456P(J)

56 I=I+l

E4B

D(_ 57 I = 1, 12

57 D3E8(I) = 0. 0

K=I

D058 I= 1, 5

D(_59J= 1,8

D3E8(K) = D3E8(K) + (D3(I)*E8(J))

59K=K+l

58K=I+1

D@60I= 1, 6

60 D67P(I) = D6(I)+ D7P(I)

DO 61I= 1, 11
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61 E467P(i) = 0. 0

K=I

D@62I= 1, 6

D@63 J = 1, 6
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E467P(K) = E467P(K) + (E4(I) *D67P(J))

63K=K+l

62K=I+1

E4B(1) = D3E8(1)

I=2

D@64J = 1, 11

E4B(I) = D3E8(I) - E467P(J)

64I=I+1

I

!

C E5B

D@ 65 I = 1, 12

65 D3E9(I) = 0.0

I

I
i

I

K:I

D@66 I= 1, 5

DO67J= 1, 8

D3E9(K) = D3E9(K) + (D3(I)*Eg(J))

67 K=K+I

66K_i+1

!

i

D@ 68 I = 1, 3

68 D78P(I)= DT(I)+ DSP(I)

D@69 I= 4, 6

i

i

69 D78P(I)= DT(I)

D@70I= 1, 11
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I
I

I
I

I
I

I
I
I
I

I

I
I

I

I
I

C

70 E478P(I) _ 0. 0

K=I

D@71 I= 1, 6

D@72J = 1, 6

E478P(K) = E478P(K) + (E4(I) "-'.-'D78P(J))

72K=K+l

71K=I+I

ESB(1) = D3E9(1)

J=2

DO 73 J = 1, 11

E5B(I) = D3E9(I) - E478P(J)

73 I=I+l

E6B

D@74I= 1, 9

74 D3E10(I) = 0. 0

K=I

D_b75I= 1, 5

D(_76 J = 1, 5

D3E10(K) = D3E10(K) + (D3(I)_'.-'E10(J))

76K=K+l

75 K=I+I

D077 I= 1, 3

77 D89P(I)= DS(I)+ D9P(I)

D@78 I= 1, 8
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I
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I

I

I
I

I

I

I

C

78 E489P(I) _ 0. 0

Dq_ 79 I _ 1, 6

D080J = 1, 3

E489P(K) = E489P(K) + (E4(I) *D89P(J))

80 K _-:K+ 1

79 K=I+I

E6B(1) = D3E10(1)

I=2

D081 J= 1,8

E6B(I) = D3E10(I)+ E489P(J)

81 I=I+l

E7B

D@82 I= 1, 9

82 D3Ell(I) = 0. 0

K=I

D(_83I= 1, 5

D_b 84 J = 1, 5

D3Ell(K) _ D3Ell(K) + (D3(I) *Eli(J))

84K=K+l

83K=:I+1

D085 I= 1, 8

85 E4D9(I) = 0. 0

K=I
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!
DQ86I_: 1, 6
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I

I

D@87 J= 1, 3

E4D9(K) = E4D9(K) ÷ (E4(I)*D9(J))

87 K_K+I

I

I

86K=I+1

ETB(1) = D3Ell(1)

I=2

I
I

I

D@ 88J = 1, 7

ETB(I) = D3Ell(I) - E4D9(J)

88 I=I+l

WRITE OUTPUT TAPE 6, 414

I

I

WRITE @UTPUT TAPE 6, 405, DIB

WRITE OUTPUT TAPE 6, 405, D2B

WRITE (_UTPUT TAPE 6, 405, D3B

!
i

I

WRITE OUTPUT TAPE 6, 415

WRITE OUTPUT TAPE 6, 405, E1B

WRITE OUTPUT TAPE 6, 405, E2B

WRITE OUTPUT TAPE 6, 405, E3B

WR_TE OUTPUT TAPE 6, 405, E4B

I

I

WRITE OUTPUT TAPE 6, 405, E5B

WRITE OUTPUT TAPE 6, 405, E6B

WRITE OUTPUT TAPE 6, 405, E7B

I

I

C

89

F1B

D@89 I= 1, 16

D3BD4(I) :: 0. 0

I
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I
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I
I

I
I

I
i

I
i

I
I

I

I

C

K=I

D@ 90 I:= I, II

D091J = I, 6

D3BD4(K) = D3BD4(K) + (D3B(I)*D4(J))

91 K=K+I

90K=I+1

D_ 92 I= 1, 16

92 D3EIB(I) = 0. 0

D@93 I= 1, 5

DO94J= 1, 12

D3E1B(K) = D3E1B(K)+ (D3(I)*E1B(J))

94 K=K+I

93 K+ I+ 1

D@ 95 I= 1, 16

95 F1B(I) = D3BD4(I) - D3E1B(I)

F2B

D_ 96 I = 1, 16

96 D3BD5(I) = 0° 0

K=I

D@97 I= 1, 11

D@98 J = 1, 6

D3BD5(K) = D3BD5(K) + (D3B(I)*D5(J))

98 K=K+I
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I
I

97 K=!+I

D_ 99 I = 1, 16

99 D3E2B(I) _ 0. 0

K=I

DO I00 I = I, 5

D@ 101J+ 1, 12

D3E2B(K) = D3E2B(K) + (D3(I)*E2B(J))

101 K = K + 1

100 K-I+I

D@ 102 I = 1, 16

102 F2B(I) = D3BD5(I) - D3E2B(I)

C F3B

D(_ 103 I = 1, 16

103 D3BD6(I) = 0. 0

K=I

D(_ 104 I = 1, 11

D@ 105 J = 1, 6

D3BD6(K) = D3BD6(K) + (D3B{I)*D6(J))

105 K _: K + 1

104 K=I+ 1

D@ 106 I= 1, 16

106 D3E3B(I) = 0. 0

K=I

D(_ 107 I = 1, 5
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C

D0 108 J = 1, 12

D3E3B(K) = D3E3B(K) + (D3(I)*E3B(J))

108 K .= K + 1

107 K = I + 1

D@ 109 I = 1, 16

109 F3B(I) = D3BD6(I) - D3E3B(I)

F4B

DO 110 I = 1, 16

110 D3BDT(I) = 0. 0

K=I

D_b 111 I = 1, 11

D_b 112 J = 1, 6

D3BD7(K) = D3BDT(K) + (D3B(I)*DT(J))

112 K = K + 1

111 K = I + 1

D@ 113 I = 1, 16

113 D3E4B(I) = 0. 0

K:_I

D@ 114 I= 1, 5

D@ 115 J = 1, 12

D3E4B(K) = D3E4B(K)+ (D3{I)*E4B(J))

115 K_=K+I

114 K:I+I

D0 116 I= 1, 16

B59
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I
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C

C

116

117

F4B(!)-- D3BDT(I) - D3E4B(I)

F5B

Drip 117 I :-- 1, 13

D3BD8(I) = 0. 0

K_I

D@ 118 I = 1, 11

D@ 119 J= 1, 3

D3BD8(K) = D3BD8(K) + (D3B(I)*D8(J))

119 K:_K+I

118 K=I+I

120

D_b 120 I = 1, 16

D3E5B(I) = 0. 0

K=I

D@ 121I = 1, 5

D_b 122 J = 1, 12

D3E5B(K) = D3E5B(K) + (D3(I) *E5B(J))

122 K :-: K + 1

121 K :_ I + 1

D@ 123 T _: 1, 13

123 F5B(I) = D3BD8(I) - D3E5B(I)

D_b 124 I = 14, 16

124 F5B(I)-_-D3E5B(I)

F6B

D(_ 125 I = 1, 13
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I
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C

125 D3BD9(1) = 0. 0

K=I

D@ 126 I= 1, 11

D@ 127 J = 1, 3

D3BD9(K) = D3BD9(K)+ (D3B(I)*D9(J))

127 K:-K+ 1

126 K = I + 1

D@ 128I= 1, 13

128 D3E6B(I) = 0. 0

K=I

D@ 129I = 1, 5

D@ 130J= 1, 9

D3E6B(K) = D3E6B(K) + (D3(I) *E6B(J))

130 K = K + 1

129 K = I + 1

D_b 131 I = 1, 13

131 F6B(I} = D3BD9(I) - D3E6B(I)

FTB

D_b 132 I = 1, 13

132 D3E7B(I) = 0. 0

K=I

D@ !33 I= !_ 5

D0 134 J = l, 9

D3ETB(K) = D3ETB(K) + (D3(I)*ETB(J))
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I
I

I
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I

134 K = K ÷ I

133 K _-I + I

D@ 135 I _ 1_ 13

135 FTB(I)=-D3ETB(I)

C F1BP

BETA = _-10o0

D@ 136 I = 1, 16

F1BP(I) = BETA;:-_F1B(I)

136 BETA :- BETA + 1.0

C F2BP

BETA - -9.0

D@ 137 I = 1, 16

F2BP(I) = F2B(I)*BETA

137 BETA = BETA + 1.0

C F3BP

BETA ::: 3_ 0

D@ 138 I= 1j 16

F3BP(I) = F3B(I)_',,:BETA

138 BETA =: BETA + 1.0

C F4BP

BETA =: -7.0

D@ 139 I = 1, 16

F4BP(I) = F4B(I) ;'_BETA

139 BETA = BETA + 1.0
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I

I

I
i

C F5BP

BETA : -6.0

D(_ 140 I = 1, 16

F5BP(t) = F5B(I) *BETA

140 BETA =: BETA + 1.0

C F6BP

BETA = -5.0

D@ 141 I = 1, 13

F6BP(I) :-_F6B(I) *BETA

141 BETA = BETA + 1.0

C F7BP

BETA .... 4.0

D@ 142 I = 1, 13

F7BP(I) = FTB(I)*BETA

142 BETA = BETA + I. 0

C R1

D_b 143 I = 1, 14

143 D1D3B(I) = 0. 0

K=I

D(_ 144 I = 1, 4

D(_ 145 J = 1, 11

D1D3B(K) = D1D3B(K) + (DI(I)*D3B(J))

145 K :: K + 1

144 K : I 4 1
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C

DO 146 _: := 1_ 14

146 D1BD2(I)_ 0. 0

K:-:I

D0 147 I : 1, 10

DO 148 J = 1, 5

D1BD3(K) = D1BD3(K) + (D1B(I)*D3(J))

148 K=K+I

147 K+ I+ 1

D(_ 149 I = 1, 14

149 RI(I) = D1D3B(I) - D1BD3(I)

R2

D(_ 150 I = 1, 14

150 D2D3B(I) = 0. 0

K=I

D(_ 151 I = 1, 4

D@ 152 J = 1, 11

D2D3B(K) = D2D3B(K) + (D2(I)*D3B(J))

152 K=K+I

151 K=I+I

DO 153 I = 1, 14

153 D2BD3(I) = 0. 0

K=I

D_ 154 I = 1, 10

D_) 155 J = 1, 5
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C

C

D2BD3(K) = D2BD3(K) + (D2B(I)*D3(J))

155 K _ K + 1

154 K = ! + 1

D_ 156 I = I, 14

156 R2(1) :::D2D3B(1) - D2BD3(1)

RIP

BETA = -8.0

DO 157 I = I, 14

alP(I) = RI(I)*BETA

157 BETA =: BETA + 1.0

R2P

BETA = -7.0

D(_ 158 1 = I, 14

R2P(I) = R2(I)*BETA

158 BETA = BETA + 1.0

Y1

D_ 159 I = 1, 17

159 R2DI(I) = 0. 0

K:_I

D@ 160I: 1, 14

D0 161 J = 1, 4

R2DI(K) = R2DI(K) + (R2(I)*DI(J))

161 K,=K+ 1

160 K _ I + 1
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DC_) 162 _ _: 1, 17

162 R1PD2(I) :: 0. 0

K::I

D@ 163 I = 1, 14

D@ 164 J = 1, 4

R1PD2(K) = R1PD2(K) + (R1P(I)*D2(J))

164 K = K + 1

163 K = I + 1

YI(1) = -R1PD2(1)

I=2

DO 165 J = 1, 16

YI(I) := R2DI(J) - R1PD2(I)

165 I = I + 1

Yl(18) = R2Dl(17)

Y2

D@ 166 I= 1, 17

166 R2D2(I) :: 0. 0

K:I

DO 167 I : 1, 14

DO 168 J = 1, 4

R2D2(K) = R2D2(K ) + (R2(I)':-'D2(J))

168 K=K+I

167 K = I + 1

DO 169 I= 1, 14
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169 R12(I):: RI(I)+ R2P(I)

D_) 170 ] = 1, 18

170 D312K(I) = 0. 0

K=I

DG_ 171 I = 1, 5

DO 172 J = 1, 14

D312K(K) = D312K(K) + (D3(I)*R12(J))

172 K = K + 1

171 K=I+I

Y2(1) = -D312K(1)

I=2

D@ 173 J = I, 17

Y2(I) = R2D2(J) - D312K(I)

173 1 = I + l

Y3

D@ 174 I= I, 31

174 R1Y2(I) = 0.0

K:_I

D@ 175 I = 1, 14

D@ 176 J = 1, ]8

R1Y2(K) = R1Y2(K) + (RI(I)*Y2(J))

176 K _: K + 1

175 K:;: I+ 1

D@ 177 I= 1, 31
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C

C

177 R2YI() _ 0. 0

K:_I

D(_ 178 _ _ 1, 14

D@ 179 J = 1, 18

R2YI(K) = R2YI(K) + (R2(I)*YI(J))

179 K = K ÷ 1

178 K=I+I

D@!80 I = 1, 31

180 Y3(I)= R1Y2(I)- R2YI(I)

Y1P

BETA = - 11.0

D@ 181 I= 1_ 18

Y1P(I) = YI(I)":-'BETA

181 BETA = BETA + 1.0

Y2P

BETA = -10. 0

D(_ 182 I = 1, 18

Y2P(I) = Y2(I) *BETA

182 BETA :: BETA + 1.0

Y3P

BETA = -18,0

D@ 183 I = 1, 31

Y3P(_) = Y3(I):",,BETA

183 BETA _: BETA + 1.0
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WRITE OUTPUT TAPE 6,

WR_ITE (7)UTPUT TAPE 6,

WRITE OUTPUT TAPE 6,

WRITE OUTPUT TAPE 6,

WRITE _bUTPUT TAPE 6,

WRITE OUTPUT TAPE 6,

WRIT,E',0UTPUT TAPE 6,

WRITE @UTPUT TAPE 6,

WRITE (_UTPUT TAPE 6,

WRITE _bUTPUT TAPE 6,

WRITE (_UTPUT TAPE 6,

WRITE OUTPUT TAPE 6,

WRITE _bUTPUT TAPE 6,

416

405, F1B

405, F2B

405, F3B

405, F4B

405, F5B

405, F6B

405, FTB

417

405, R1

405, R2

418

405, ¥1: _.

WRITE OUTPUT TAPE 6, 405, Y2

WRITE _bUTPUT TAPE 6, 405, Y3

RIB

D@ 184 I = 1, 48

184 Y2PY3(I) = 0. 0

K:=I

D@ ._35 I = 1, 18

D(_ 186 J = 1, 31

Y2PY3(K) :- Y2PY3(K)+ (Y2P(!)*Y3(J))

186 K=K+I

185 K=I+I
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DO i87 _ ::: 1, 48

187 Y2Y3P(:_) _: 0o 0

DO 188 I : 1, 18

DO t89 J = 1_ 31

Y2Y3P(K} = Y2Y3P(K) + (Y2(I)*Y3P(J))

189 K::K+ 1

188 K-: ! + 1

DO 190 ! :_- 1, 48

190 Y1Y3(1) =: 0. 0

K=I

DO 191i: 1, 18

DO 192J = 1, 31

YIY3(K) :: Y1Y3(K) + (YI(I)".,Y3(J))

192 K _ K + 1

191 K::._+ 1

DO 193 !- 1, 48

193 RIB(1) -: Y2PY3(I) - Y2Y3P(I) + Y1Y3(I)

R2B

DO 194 _: _: 1, 48

194 IR2B(:0 :_ 0° 0

K:-I

DO 195 Z ::: 1, 18

DO 196 J _: 1, 31
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R2B(K) : R2B(K) + (Y2(I)_:_Y3(J))

196 K_-K-_ 1

_95 K:.,,_,+ 1

R3B

D0 197 t= 1, 44

197 R2PY3(_) _= 0o 0

K=I

D@) 198! :: 1, 14

DO 199 J =: 1, 31

R2PY3(K) :: R2PY3(K) + (R2P(I)*Y3(J))

199 K :: K + 1

198 K= ]:+ 1

DO 200 I = 1, 44

200 R2Y3P(I) = 0.0

K 1

D0 201 I = 1, 14

D_202 J = 1, 31

R2Y3P(K) = R2Y3P(K) + (R2(I)*Y3(J))

202 K ..: K -_ 1

201 K _ I + 1

DO 203 I =_ 1, 44

203 R1Y3(_:) = 0o 0

K=:l

D_ 2O4 I = 1, 14

B71
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C

Dq) 205 J = 1_ 31

RI.3t_K) _:EIY3(K) + (RI(I)*Y3(J))

205 K = K * 1

204 K-_!+ 1

DO 206 Z _- 1, 44

206 R3B(:) .... R2PY3(I) + R2Y3P(I) - R1Y3(I)

R4B

DO 207!= 1, 44

207 R4B(I) = 0. 0

K=I

DO 208 I = 1, 14

DO 209 J :_: 1, 31

R4B(K) :_ R4B(K) - (R2(I)*Y3(J))

209 K : K + 1

208 K ::: I+ 1

G1B

DO 210_, 1, 19

210 R2D4(I) _:: 0. 0

K:I

D@211I , 1, 14

D_ 212 J :_ 1, 6

R2D4(K) ==R2D4(K) + (R2(I)*D4(J))

212 K = K + 1

211 K :_-:_2+ 1
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DO 213 I = 1, 20

213 D3F1P(I) = 0. 0

K_:I

D@ 214 I = 1, 5

DC) 215 J = 1, 16

D3F!P(K) = D3F1P(K)+ (D3(I),:-'F1BP(J))

215 K = K + 1

214 K::I+I

G1B(1) = -D3F1P(1)

1=2

D_ 216 J = 1, 19

G1B(!) = R2D4(J) - D3F1P(I)

216 I = I + 1

G2B

D_ 217 I = 1, 19

217 R2DS(i) = 0. 0

K=I

D0 218 I --=1, 14

D@219 J = 1, 6

R2D5(K) = R2D5(K) + (R2(I),:'-D5(J))

219 K _ K + 1

218 K::_+I

D_ 220 I = 1, 16
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220 F12(_) = FIB(I) + F2BP(I)

D0 221 I = 1_ 20

221 D312(5) _: 0_ 0

K=I

D@ 222 I = 1, 5

D@ 223 J = !, 16

D312(K) = D312(K) + (D3(I)*FI2(J))

223 K _-_K+ 1

222 K = I + I

G2B(1) = -D312(1)

I=2

D(_ 224 J = 1, 19

G2B(1) = R2D5(J) - D312(I)

224 I = I + I

G3B

D0 225 I = l, 19

225 R2D6(1) = 0° 0

K=I

DO 226 I = 1, 14

Dq) 227 J = 1, 6

R2D6(K) = R2D6(K) + (R2(1)*D6(J))

227 K = K + I

226 K = i + 1

D_) 228 I = 1. 16
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228 F23(_) _- F2B(I) + F3BP(I)

De) 229 _ = 1, 2O

229 D323(!) :_ 0o 0

K=I

D@ 230 i = 1, 5

DO 231 J = 1, 16

D323(K) = D323(K) + (D3(I)*F23(J))

231 K=K+I

230 K = i-_ 1

G3B(1) = -D323(I)

I=2

DO 232J = 1, 19

G3B(!) = R2D6(J) - D323(I)

232 I:_I+l

G4B

DO 233 i = 1, 19

233 R2D7(!) = 0. 0

K-1

DG) 234 I = 1, 14

D_ 235 J = 1, 6

R2D7(K) = R2D7(K) + (R2(1) *DT(J))

235 K--:K+ 1

234 K ,_ I + 1

DO 236 I = i, 16
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236 F34(]D = F3B(I) + F4BP(I)

D(_ 237 I = 1, 20

237 D334(!) = 0. 0

K=I

D_b 238 : = 1, 5

D_b 239 J = 1, 16

D334(K) = D334(K) + (D3(I)*F34(J))

239 K = K ÷ 1

238 K = I + 1

G4B(1) = - D334(1)'

I=2

D_ 240 J = 1, 19

G4B(I) = R2D7(J) - D334(I)

240 I = I + 1

G5B

D(_ 241 I = 1, 16

241 R2D8(I) = 0.0

K=I

D_b 242 I = 1, 14

D@ 243 J = 1, 3

R2D8(K) = R2D8(K) + (a2(I) *D._(.J))

243 K-K+I

242 K = I + 1

D@ 244 I = 1, 16
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244 F45(I) = F4B(I)+ FSBP(I)

D@ 245 I = 1, 20

245 D345(_) = 0. 0

K=I

D(_ 246 I = 1, 5

D_ 247 J = 1, 16

D345(K) = D345(K) + (D3(I) *F45(J))

247 K = K + 1

246 K = I + 1

G5B(1) = -D345(1)

I=2

D_b 248 J = 1, 16

G5B(I) = R2D8(J). D345(I)

248 I=I+l

DO) 249 I = 17, 20

249 G5B(I)= _D345(I)

G6B

D(_ 250 I = I, 16

250 R2D9(1) = 0. 0

K=I

D@2511= 1, 14

D@252 J-_ 1, 3

R2D9(K) = R2D9(K) + (R2(I)*D9(J))

252 K ;;: K+ 1
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251 K=Z+I

DO) 253 ! _ 1, 13

253 F56(t) = F5B(I)+ F6BP(I)

D0 254 I = 14, 16

254 F56(i)= F5B(I)

D_ 255 ! -- 1, 20

255 D356(I) = 0. 0

K=I

D@ 256 I = 1, 5

D_ 257 J = 1, 16

D356(K) = D356(K)+ (D3(I)*F56(J))

257 K=K+I

256 K = I + 1

G6B(1) = -D356(1)

I=2

DO 258 J = 1, 16

G6B(I) = R2D9(J) - D356(I)

258 -_=I÷ 1

DO 259 I = 18, 20

259 G6B(I)=-D356(I)

G7B

D_ 260 I _: 1, 13

260 F67(I) = F6B(I) + FTBP(I)

D@261I= 1_ 17
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261 G7B(I) = 0_ 0

K=I

Dq_ 262 I= 1_ 5

D@ 263 J = 1, 13

G7B(K) = GTB(K) - (D3(I)*F67(J))

263 K = K + 1

262 K=I+I

C GSB

D@ 264 I = 1, 17

264 G8B(I) = 0 0

K=I

D@ 265 I = 1, 5

D@266 J = 1, 13

G8B(K) : G8B(K) - (D3(I) *FTB(J))

266 K = K + 1

265 K = I + 1

C G1BP

BETA = -13.0

D_b 267 I = 1, 20

G1BP(I) = G1B(I)*BETA

267 BETA = BETA + 1.0

C G2BP

BETA = -12,0

D(_ 268 I = 1, 20
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G2BP(I) :: G2B(I),:-'BETA

268 BETA = BETA -_ 1.0

C G3BP

BETA = -11.0

D_b 269 I = 1, 20

G3BP(]) = G3B(])_BET_A

269 BETA = BETA + 1.0

C G4BP

BETA = -10.0

D_b 270 I = 1, 20

G4BP(I) = G4B(I)*BETA

270 BETA = BETA + 1.0

C GSBP

BETA = -9, 0

D@ 271 I := 1, 20

GSBP(I) = GSB(I)*BETA

271 BETA _: BETA + 1.0

C G6BP

BETA ,; -8 0

D@ 272 I = 1, 20

G6BP(I) = G6B(I):.'-'BETA

272 BETA = BETA + 1.0

C G7BP

BETA = -7.0
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273

C

274

C

D@ 273 I = 1, 17

G7BP(1) = G7B(1)*BETA

BETA = BETA + I., 0

G8BP

BETA = -6, 0

DO 2741 = i, 17

G8BP(I) = GSB(I)*BETA

BETA = BETA ÷ 1.0

WRITE @UTPUT TAPE 6, 420

WRITE _bUTPUT TAPE 6, 405, RIB

WRITE @UTPUT TAPE 6, 405, R2B

WRITE @UTPUT TAPE 6, 405, R3B

WRITE (_UTPUT TAPE 6, 405, R4B

WRITE @UTPUT TAPE 6, 423

WRITE OUTPUT TAPE 6, 405, G1B

WRITE @UTPUT TAPE 6, 405, G2B

WRITE @UTPUT TAPE 6, 405, G3B

WRITE (_UTPUT TAPE 6, 405, G4B

WRITE @UTPUT TAPE 6, 405, G5B

WRITE OUTPUT TAPE 6, 405, G6B

WRITE (_UTPUT TAPE 6_ 405, GTB

WRITE (_UTPUT TAPE 6, 405, G8B

T1

D0 275 I = 1, 60

B81



I

I
l
I

I
I

l
l

I
l
I

I
I

I
I

I

I
I

I

C

275 TI(1) = 0_ 0

K=I

D@ 276 I = i, 44

D(b 277 J = i, 17

TI(K) = TI(K) + (R4B(I)*G8B(J))

277 K=K+I

276 K=I+I

WRITE @UTPUT TAPE 6, 424

WRITE (_UTPUT TAPE 6, 405, T1

T2

D(_ 278 I = 1, 60

278 R2FT(I) = 0.0

K=I

D@ 279 I = 1, 48

D@ 280 J = 1, 13

R2FT(K) = R2FT(K)+ (R2B(I)*FTB(J))

280 K = K + 1

279 K=I+ 1

D_b 281 I = 1_ 60

281 R3G8(I) ==0.0

K=I

D_ 282I= 1, 44

D@ 283 J = 1, 17

R3G8(K) = R3G8(K) 4 (R3B(I)*G8B(J))

283 K-K+I

B 82
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282 K=I+I

D@ 284 1 = 1, 17

284 G78(I) = GTB(I) ÷ G8BP(I)

D(_ 285 I = 1, 60

285 R478(I) = 0. 0

K=I

D_b 286 I = 1, 44

D(_ 287 J = 1, 17

R478(K) = R478(K) + (R4B(I) *G78(J))

287 K = K + 1

286 K -- I + 1

D@ 7_88I = 1, 60

288 T2(I) = R2F7(I) + R3G8(I) + R478(I)

WRITE _bUTPUT TAPE 6, 426

WRITE _bUTPUT TAPE 6, 405, T2

T3

D(_ 289 I = 1, 60

289 R1FT(I) = 0. 0

K:_I

D@ 290I : 1, 48

D@ 291J = 1, 13

R1F7(K) = R1F7(K) + (R1B(!)*FTB(J))

291 K+ K+ 1

290 K = I + 1
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292 R267Z(I) _ 0.0

K=I

D@ 293 I = 1, 48

I

I

D(_ 294 J = 1, 13

R267Z(K) : R267Z(K) + (R2B(I)*F67(J))

294 K = K + 1

!

I

293 K=I+I

D@ 295 I = 1,

295 R3GT(I) = 0. 0

6O

I

I

K=I

D@ 296 I = 1, 44

D@ 297 J = 1, 17

I
I

I

I

R3G7(K) = R3G7(K)+ (R3B(I)*GTB(J))

297 K=K+ 1

296 K = I + 1

D@ 298 I = I, 17

298 G67(I) = G6B(1) + G7BP(I)

D_b 299 I = 18, 20

I

I
l

I
I

299 G67(I)= G6B(I)

D_b 300 I = 1, 63

300 R467G(I) = 0_ 0

K=I

D_b 301 I --=1, 44

D@ 3O2 J = 1, 20

R467G(K) = R467G(K) + (R4B(I)*G67(J))
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302 K_-K+ 1

301 K = I + 1

D_b 303 I = 1, 60

303 T3(I) = R1F7(I) + R267Z(I) + R3GT(I) ÷ R467G(I)

D(_ 304 I = 61, 63

304 T3(!)= R467G(!)

WRITE OUTPUT TAPE 6, 427

WRITE @UTPUT TAPE 6, 405, T3

T4

D@ 305 I = 1, 60

305 R1F6(I) =. 0. 0

K=I

D_ 306 I = 1, 48

D(_ 307 J = 1, 13

R1F6(K) = R1F6(K) -e (RIB(I) ;I,F6B(J))

307 K=K÷I

306 K=I+I

D_b 308 I = 1, 63

308 R256Z(I) = 0. 0

K=I

D@309I = 1, 48

D@310J = 1, 16

R256ZiK) = R256Z(K) + (R2B(I)_'.-'F56(J))

310 K=K+I

B 85
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309 K = I + 1

D@ 311 I = 1, 63

311 R3G6(I) = 0.0

K=I

D@312I-- 1, 44

DO 313 J = 1, 20

R3G6(K) = R3G6(K) + (R3B(I)*G6B(J))

313 K:K÷I

312 K=I+I

D(_ 314 I = 1, 20

314 G56(I) = GSB(I)+ G6BP(I)

DO 315 I = 1, 63

315 R456G(I) = 0.0

K=I

D@ 316 I = 1, 44

D(_ 317 J = 1, 20

R456G(K) = R456G(K) ÷ (R4B(I) *G56(J))

317 K=K+I

316 K=I÷I

D@ 318 I := 1, 60

318 T4(I) :-: R1F6(I) + R256Z(I) + R3G6(I) ÷ R456G(I)

DO 319 I = 61, 63

319 T4(1) = R256Z(t) + R3G6(I) + R456G(I)

WRITE (_UTPUT TAPE 6, 429

B 86
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WRITE @UTPUT TAPE 6, 405, T4

T5

D@ 320 I = 1, 63

320 R1FS(I) = 0. 0

K=I

D@321I= !, 48

D@ 322 J = 1, 16

R1F5(K) = R1FS(K) + (R1B(I)*FSB(J))

322 K = K + 1

321 K = I ÷ 1

D_b 323 I = 1, 63

323 R245Z(I) = 0. 0

K=I

D_b 324 I = 1, 48

D_b 325 J = 1, 16

R245Z(K) = R245Z(K) ÷ (R2B(I)*F45(J))

325 K=K+I

324 K=I+I

D_ 326 I = 1, 63

326 R3GS(Z) = 0. 0

K=I

D@ 327 I = 1, 44

D(_ 328 J : 1, 20

R3GS(K) = R3GS(K) + (R3B(I)*GSB(J))
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328 K=K+I

327 K=I+I

DO 329 I = 1, 20

329 G45(I) = G4B(I) + GSBP(I)

D@330I= 1, 63

330 R445G(I) = 0. 0

K=I

D@ 331 I = 1, 44

DO 332 J = 1, 20

R445G(K) = R445G(K) + (R4B(1)*G45(J))

332 K = K ÷ 1

331 K=I÷I

D@333 I= I, 63

333 T5(I) = R1F5(I) + R245Z(I) + R3G5(I) -t- R445G(I)

WRITE OUTPUT TAPE 6, 430

WRITE OUTPUT TAPE 6, 405, T5

T6

DO 334 I = 1, 63

334 F_I _4(]) = 0. 0

K=I

DO 335 I = 1, 48

D@336 J = 1, 16

R1F4(K) = R1F4(K) + (R1B(I)*F4B(J))

336 K = K + 1
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335 K = I ÷ 1

DO 337 I = 1_ 63

337 R234Z(I) = 0. 0

K=I

D@ 338 I = 1, 48

D(_ 339 J --- 1, 16

R234Z(K) : R234Z(K) -t- (R2B(I) *F34(J))

339 K = K + 1

338 K=I+I

D_b 340 I = 1, 63

340 R3G4(I) = 0. 0

K=I

D_ 341 I = 1, 44

D@ 342 J = 1, 20

R3G4(K) = R3G4(K) + (R3B(I)*G4B(J))

342 K = K ÷ 1

341 K=I+I

DO 343 I = 1, 20

343 G34(I) = G3B(I) ÷ G4BP(I)

D(_ 344 I = 1, 63

344 R434G(I) = 0. 0

K=I

D(_ 345 I = 1, 44

D@346 J = 1, 20
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R434G(K) = R434G(K) + (R4B(I)*G34(J))

346 K = K + 1

345 K := ! + 1

D_b 347 I = 1, 63

347 T6(I) = R1F4(I) + R234Z(I) + R3G4(I) + R434G(I)

WRITE @UTPUT TAPE 6, 431

WRITE OUTPUT TAPE 6, 405, T6

T7

D_b 348 I = 1, 63

348 R1F3(I) = 0.0

K=I

D0 349 I = 1, 48

D0 350 J = 1, 16

R1F3(K) = R1F3(K) + (R1B(I)*F3B(J))

350 K = K + 1

349 K = I + 1

D0 351I = 1, 63

351 R223Z(I) = 0. 0

K=I

D0352I= 1, 48

D0 353 J = 1, 16

R223Z(K) = R223Z(K) + (R2B(I) *f23(J))

353 K = K + 1

352 K = I + 1

B 90
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D_ 654 I = 1, 63

654 R3G3(I) = 0. 0

K=I

D@ 354 I = 1, 44

D@ 355 J = 1, 20

R3G3(K) = R3G3(K) + (R3B(I)*G3B(J))

355 K = K + 1

354 K = I + 1

D@ 356 I = 1, 20

356 G23(I) = G2B(I) ÷ G3BP(I)

D_ 357 I = 1, 63

357 R423G(I) = 0.0

K=I

D_ 358 I = 1, 44

D(_ 359 J = 1, 20

R423G(K) = R423G(K) ÷ (R4B(I)*G23(J))

359 K = K ÷ 1

358 K = I + 1

D_b 360 I = 1, 63

360 TT(I) = R1F3(I) + R223Z(I) + R3G3(I) + R423G(I)

WRITE _UTPUT TAPE 6, 432

WRITE _UTPUT TAPE 6, 405, T7

T8

D_b 361 I = 1, 63
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361 R1F2(I) = 0_ 0

K=I

D_b 362 I = 1, 48

D_b 363 J = 1, 16

R1F2(K) = R1F2(K) + (R1B(I) *F2B(J))

363 K = K ÷ 1

362 K = I + 1

D(_ 364 I = 1, 63

364 R212Z(I) = 0. 0

K=I

D@365 I= 1, 48

DO 366 J = 1, 16

R212Z(K) = R212Z(K) + (R2B(I) *F12(J))

366 K = K + 1

365 K = I + 1

D@ 367 I = 1, 63

367 R3G2(I): 0.0

K=I

D_ 368 I = 1, 44

D(_ 369 J = 1, 20

R3G2(K) = R3G2(K) + (R3B(I)*G2B(J))

369 K = K + 1

368 K=I+ 1

D(_ 370 I = 1, 20
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370 G12(i) = G1B(I) + G2BP(I)

Dq) 371 I = 1, 63

371 R412G(I) : 0. 0

K=I

D(_ 371 I = 1, 44

D(_ 373 J = 1, 20

R412G(K) = R412G(K) + (R4B(I)*G12(J))

373 K = K + 1

372 K = I + 1

D@ 374 I= 1, 63

374 T8(I) = R1F2(I) + R212Z(I) + R3G2(I) ÷ R412G(I)

WRITE (_UTPUT TAPE 6, 433

WRITE OUTPUT TAPE 6, 405, T8

T9

DO 375 I = 1, 63

375 R1FI(I) = 0.0

K=I

D_b 376 I = 1, 48

DO 377 J = 1, 16

R1FI(K) _-- RtFI(K) + (R1B(I)*FIB(J))

377 K = K + 1

376 K = ! + 1

D@ 378 I = 1, 63

378 R2F1P(I) = 0. 0
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K :::_ 1

DO 379 ,_ = 1_ 48

D_) 380 J = 1, 16

R2F1P(K) = R2F1P{K) + (R2B{I)".-'F1BP(J))

380 K = K + 1

379 K = I + 1

D@ [,;1 I = 1, 63

381 R3GI(I) = 0.0

K=I

D@ 382 I = 1, 44

D@ 383 J = 1, 20

R3GI(K) = R3GI(K) + (R3B(I)*G1B(J))

383 K = K + 1

382 K = I + 1

D_ 384 I = 1, 63

384 R4G1P(I) = 0.0

K=I

D(_ 385 I = 1, 44

D@ 38C J = 1, 20

R4G1P(K) = R4G1P(K) + (a4s(I) *G1BP(J))

386 K = K + 1

385 K=I+I

DO 387I = 1, 63

387 T9(I) = R1FI(1) + R2F1P(I) + R3GI(I) + R4G1P(I)
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WRITE OUTPUT TAPE 6, 434

WRITE OUTPUT TAPE 6, 405, T9

CALL EXIT

1 FORMAT

402 FORMAT

404 FORMAT

405 :FORMAT

407 FORMAT

408 FORMAT

410 FORMAT

413 FORMAT

414 FORMAT

415 FORMAT

416 FORMAT

417 FORMAT

418 FORMAT

420 FORMAT

423 FORMAT

424 FORMAT

426 FORMAT

427 F_RMAT

429 FORMAT

430 FORMAT

431 FORMAT

(4E18.7)

(1Hl(4E18.7))

(!5H A1 THROUGH A17)

(1H (6E18.7))

(15H B1 THROUGH B15)

(15H C1 THROUGH C20)

(14H1D1 THROUGH D9)

(15H E1 THROUGH Ell)

(14H D1B, D2B, D3B)

(16H E1B THROUGH ETB)

(16H F1B THROUGH FTB)

(10H1R1 AND R2)

(llH Y1, Y2, Y3)

(16H R1B THROUGH R4B)

(16H1G1B THROUGH G8B)

(3H T1)

(3H T2)

(3HIT3)

(3H T4)

(3H T5)

(35 W6)

B 95
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432

433

434

F(_RMAT (3H 1 -_7)

F(_RMAT (3H '._3)

FORMAT (3H T9)

END(l, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0)
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APPENDIX C

AN ASYMPTOTIC SOLUTION FOR CONICAL SHELLS

OF LINEARLY VARYING THICKNESS

Prepared by

Chin Hao Chang

appendix was previously submitted as

contract NAS 8-5168
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ABSTRACT

_vtV_

An asympotic general solution of a segment of an elastic and

isotropic truncated conical shell with linearly varying thickness

subjected to lateral normal loads is presented. The segment is

free from normal force and moment along the two straight edges but

arbitrarily supported along the two circular ends. As an example,

a solution is given for a segment with one circular end free and

the other end fixed, C"_s-__._...u_.._
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Technical Report C for NASA Contract NAS8-5168

AN ASYMPTOTIC SOLUTION FOR CONICAL SHELLS

OF LINEARLY VARYING THICKNESS

Prepared By

Chin Hao Chang, Ph. D.

I. INTRODUCTION

The results presented in this report are a continuation of the

work which has been reported in a Summary Report of November, 1962,

for Contract No. NAS8-5012, see Reference (I).

In that report, a general method leading to the solution of the

problem of a segment of conical shell subjected to laternal normal

load was given. An exact solution could be obtained by following that

method. However, the numerical computations involved would be very

laborious. A closer study of the data for an engine shroud supplied

by the sponsoring agency has revealed that the bending effect is almost

negligible. In other words, many terms associated with the parameter

k which accounts for the bending effect are not necessary. Since the

shell itself is quite thin, k is a very small value. Because of this

fact, a limiting case as k approaches zero asymptotically has been

investigated. An asymptotic solution for this case has been obtained.

In this report, for completeness, the entire problem and its

basic formulations are given. A method for obtaining the homogeneous

solution follows and then a general asymptotic solution of a segment

of conical shell subjected to a lateral normal load is presented. As

an example of application of the general solution, the solution for a

cantilever segment with the data supplied by the sponsoring agency is

+ Assistant Professor of Engineering Mechanics, University of

Alabama, University, Alabama.
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given along with numerical curves directly applicable for design

purpose,

II. THE BASIC FORMULATIONS

Consider a segment of a truncated thin conical shell of elastic

isotropic and homogeneous material. The middle surface of the shell

is described by the co-ordinates s and 0, where s is the distance to

a point measured from the apex along a generator and @ is the angle

measured from an edge meridian to the generator on which the point

lies. The inclination of s with respect to the central axis in indi-

cated by an angle a the complement of the half-central angle of the

cone. The thickness t of the shell is assumed to be in direct pro-

protion to the distance s, i.e.,

t=_s (1)

where 6 is a constant of proportionality. The segment is bounded

by s = L I,L and 8=0 and Ox as shown in Fig. (I).

Let u, v, and w be the three displacement components in the s,

O, and normal-to-the-middle-surface directions respectively. The

elastic law assumes the following relationships between the forces

and displacements:

__( ..N = D[V' + U'sec a + v + w tan a)]-K w tan
S S S '

U'
1 ( + V + W tancO +_V']Ne = I_-_ cos

I

+ K-_" [ _ tan £ + w tan2a + w"sec2a + sw'] tan

Ns8 : D I____9[u U + ]
S S COS C_

I-_ 1 1

+K-_- _-[su" -U - SW'" sina
-- + W'

sin
] tan 2
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NOs = D--
1-9 1 [ SU ° - U + V' see _ ]
2 s (2)

l-v 1 1 w' 1
+ K _ s3[V' sec a + sw:" 'sin a sin ] tan 2 a ,

l'r ° "

M s = K -sZ [S2W -sv'tan a +¢(w"sec2a +sw'-u'sec a tan _)],

M e = K _ [W" see 2 a +sw" +w tan 2 a +gs2w "'] ,

Ms0 = K(1-v) _ [ sw'" -w'-su" sin a + u sin a ] see a,

Mes = K (l-v) _ [sw'" -w' - _ su'sin a + _ u sin a

+ _ v' tan a] sec a,

in which N$_ N 0, Ms, MO, are normal forces and moments per unit length

in the s and @ directions; Ns@ and Ms0 are shearing forces and twisting

moment per unit length on a section normal to s and acting in the @

direction, and the constants D and K are defined as following:

Et Eta

D = _ , K = 12(l_#Z) (3)

The dots indicate partial differentiation with respect to s and primes

differentiation with respect to @.

Let Ps' P@' and Pr be the load components per unit area in the S,

O, and normal-to-the-surface directions respectively. The six equations

of equilibrium assume the following form :

(SNs)° + N'Os sec a - N o = -PsS

S(Nso) ° + N$ see a + Nos - Q0 tan a = -P0 s

N@ ' "tan _ + Q0 see a + (S@) = P SS r

(SMs)" '+ M_ssec a - M O = SOs

(SMso)" + M_ see _ + Mes = SOe

(4.)

S(N0s - Nso) = M0s tan

i
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where Q0 and Qs are the transverse shearing forces acting on 0 and

s planes respectively.

The last of equations (4) is an identity which can be seen by

making use of stress-displacement law (2). Therefore, this equation

may be dropped. Using the third and fourth equations of equations

(4), the transverse shearing forces Q@ and Qs may be eliminated from

the other three. Finally there are three equations of equilibrium:

(SNs)" + N'@s see _ -N O = -PsS,

SN@ tan _ + S(SMs)'" + (SM's@)" see _ + (SM_s)" sec

,, S 2
+ M e see 2 a - SM_ = Pr " (5)

S(SNs0)" +SN_ see a + SN0s - (SMs0)" tan

_M _S tan a - M_ tan a sec a = -P0 $2,

These three equations may be expressed by means of the elastic law in

terms of the three displacements in the following form:

I+_
I-__/_2SZu'" + u" sec2a ÷ (l-P) su" - (l-_)u + T sv'" see a

3

+ (2-_) V' see _ + s' tan _ see _ + _ (I-_) s 2 v'" tan

+ 3 (i-_) su" tan _ - 3(I-_) u tan _ - (_) s2w ''" see

-3(I-_) sw'" see _ + 3(I-_) w' sec _] tan _ = - Pe s2
m

D

(6)

(l+_) 3 i-_ v,,
2 SU '° sec _ - _ (I-_) u' sec _ + S 2 v'" + T see

+2Sv" -(l-P)v + Psw" tan c - (I-_) w tan

I-# v" I-# sw"
+k [ -_- tan c sec 2 c - v tan c - saw''" + -_- " see 2

3-_ -p S 2
- -- w _' see 2 & - sw" - w tab 2 _] tan _ = s

D

_ 3S2w ,,.

I
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[U' see _ + _sv" + v + w tan _] tan _ + k [ _ __3-7s2u, .. sec a
2

I- _) SV"
- (3+_)su'" see _ + (3-5#)u' sec _ - sav "'" + -_- " see 2

_6s2v "" + (2-7) V" sec 2 a - 7 SV" -v(l- tan 2 _)] tan

where

+k [s4w .... +2s2w ....sec 2 _ + w....sec 4 _ + 8Sa w'''

+_W" "sec2g + s2( ll+3_)W" "+2W"_tan2as ec2_ s 2

-(5-6_) w': see 2 _ - 2(I-3_) sw" - w (l-tan2_) tan2_] = Pr _-

k =
12 (6a)

The above formulations of the problem are given in Reference (2).

They are exact in a sense that only terms of second and higher power

of K or equivalent of k are neglected in the elastic law (2).

The segments considered are free from normal moment and force along

the two straight edges such that

M@ = 0 and N 9 = 0 for 9 = 0 and 91

These two conditions are satisfied by assuming

n_9
u = _ A f (s) cos

n=l n n

n_g
V = _ B f (s) sin-

n=l n n 91

n_g
W = _ C f (S) sin-

n n 91n=l

(7)

(8)

where A Bn, and C are constants and fn(S) is a function of s to ben' n

determined by the set of equations (6). Now consider the case in which

the segment is subjected to only a lateral normal load. Thus

P@ = Ps 0

and let

n?_O

Pr : Z AnPn(S) sin @-_-n=l (9)
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For convenience, a non-dimensional variable is introduced such that

Y =_ (I0)

along with the assumption

fn (s) = y_-I

in which _ are constants to be determined.
n

to (II) into (6)results

d i + d I + d I = 0iA n 2B n 3Cn

d21A n + d22B n + d23Cn = 0

(I-#2)L AnPn(y)_ -Ad31An + d32Bn + d33Cn = E Z n

(11)

Substituting equations (8)

(12)

where d11 = T (l+3k tan2=) (9-A n) +m 2n

d12 : _ [(7-5#) + (l+#)l n] m n

{ k - (3-_)In ]} m tan ad_ = 1 + _ [3(9-11#) + 8#A n n

I l_An ) (l-P) (l+_m n) + k tan2= (I+ .!_d2 2 : _ ( + 1 2 m n) (13)

1 1 Id2a = _ tan _ [(2->) -#An ] - _ k tan _ 1-8 tan2=

+ 2(7-3) m2n "_ 3+2(i->)m_]_ n + 3_ 2n -_n}

_3 = tan2_ + _ k (13-12P) -16(l-tan2_) tan 2

+ 8 [(11-12 ) - 4 tan2_] m2n + 16rn4n - 2 [(7-6#)+4mn]A_ +I n}

while d21 , d32 , and d31 are obtained by replacing A n by -_n in d12 and d23

and d13 respectively and where

_ n_
m =-- see
n @1

(14)

III. ON THE HOMOGENEOUS SOLUTIONS

The homogeneous solutions are obtained from the following three

simultaneous equations of equations (12)

diIA + dleB + disC = 0

I
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d2_A + d22B + d_ C = 0

in which and also hereafter the subscript n is omitted for brevity.

For the constants A, B and C to be non-trival, the determinant must vanish

i.e°

dl i dl 2 dla

d21 d22 d2a = 0

(16)

Substituting the coefficients given by (13) into the determinant and

neglecting the terms of second and higher power of k, as one did in

obtaining the elastic law (2), yields,

k[A 8 - g6 A6 + g4i 4 - g2 A2 + gO ] + GIA4-10A 2 + 9] = 0 (17)

where

G = 16(I-# 2) tan2_

g6 = 4(7-47) - 8 tan2e +16m p

g4 = 2[(127-136_ + 2472) - _(8+3_) tan2_ + 8(4-3_ 2) tan4_]

+ 16[ 17-12_-6tan2_] m 2 - 96m 4 (18)

g2 = _(203-216 +120_ 2) - 2(80-617) tan2c +40(4-3_ 2) tan2_]

+16[(71-723) - 4 (13-I0_) tan2a + 8(2-_)tan4c]m 2

+ 64 [(13-12_) - 2(4-_) tan2c] m 4 +256m 6

gg = 9[(13-12_) (5-4_) - 8(8-7_) tan2c +16(4-3_2)tan4c]

+ 16[(215-412_+192_ 2) + 2(89-172_+96_ 2) tan2_

+ 40(2-_) tan4c]m 2

- 32[(81-184_ +96_2) + 4(16-13 )tan2c - 8 tan2a]m &

+ 256[(3-4_) - 2 tan2c] m 6 + 256 m 8

I
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The equation (17) could be solved by Brown's method as was mentioned

in the Summary Report. However, it has been found that this method is quite

laborious° In view of the approximations made in arriving at the equation

itself, a method which, to some extent is similar to so called perturbation

method is used. This method gives a quick result with the same accuracy

provided by the present theory.

I ntr oduc ing

A m = x 0 + kx I + ... (19)

into equation (17) and neglecting the terms of second and higher power

of k gives

4

_x 0 - g6_o+ _x_ - g2x0 + go + G(2X0Xl- 10Xl)]

2 _ 10x0 + 9] : 0 (20)+ G[X 0

This equation is satisfied if

x_ - 10x 0 + 9 = 0 (21)

and

x04 - g6x0 a + g4x02 - g2x0 + gO + 2G(x0-5) xl = 0 (22)

Equation (21) provides two roots of x 0

x 0 = 1 and 9 (23)

Solving for xI from equation (22)

x04 - g6Xo _ + g4Xo 3 - g2Xo + gO

xl .... 2G(x 0 - 5) ...... (24)

Thus two roots of A 2 are obtained. Denoting them by A1 2 and _22,

1 - g6 + g4 - g2 + gO
A12 = 1 + k

8G -"
(25)

A22 = 9 - k 94 - 9_g6 + 92g_ - 992 + gO

8G

2 and . Then equation (17) mayLet the other two roots of ,/2 be 13 ,!42

be written as follows:

(I 2 -/_12)(A 2 - A22)(A 2 -I 3 2)(,42 -A4 2) = 0

I
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Expa?ding the previous equation and equating the coefficients of A 6

and A 0 to the corresponding ones in equation (17), one obtains

2

A12 ,_.A22 +A 2 +14 = g6

2 9G
l_ 2A_ 2 A3 142 = go + T

2 and ./42 yieldsSolving for_

2 AI 2) / i _ _ 2 A 22)]
As2 = _ (g6 - A2 - +_ Z_ >_'_2 (go ÷ ,,.) _ [i (g6 -il -4 2

(26)

Finally four real roots of A are obtained from equation (25) and four

complex roots from (26).

With the eight roots computed_ one may follow the method outlined

in the Summary Report to obtain the homogeneous solutions of the dis-

I

!

I

placements. However, it would be almost impossible to work out the

solutions in a general form. A closer study of the algebric expressions

of the solutions reveals that many terms are negligible because of

smallness of the parameter k (see Table I). If only the terms with the

lowest power of k are retained in the algebrie expressions, th_ solution

I

I

I

will :be simplified. Such simplified solutions would be,_adequate for

practical design of thin shells such as the one being concerned° In

what follows, a solution considering the parametric constant k approaching

zero asymptotically is presented.

I
IV. THE ASYMPTOTIC SOLUTIONS

(I). The Asymptotic Homogeneous Solutions

1

1

1

1

Let the parameter k approach zero asymptotically and only the terms

with the lowest power of k be retained_ then the eight roots of A

obtained from equations (25) and (26) become

A i = ± I, la = ± 3 (27)
2 4

A : tf(i+i)_ A_ = _ f(l-i) (28)
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where

G 1/4

When _ =_i (i = 1,2 3 and 4) the corresponding coefficients A' ' i

and B. may be solved in terms of C.. From the first two of equations
l l

(15) ,

where

Ai = 4mtan&M 12(_i2+li+2)+(_i+l)(Ai-5)_-4m2]Ci (30)

S °

i 2 tanM _ (Ai-3) f[()'i+3)1 ()"i*l_...._ _9] ÷ 4m 2) Ci

M m (Ai2-9)(Ai2_5+4_) + 8m2(2m2+4>_5-A.2).l

Substituting the values of li given by (27) into the foregoing formulation

yields a set of the homogeneous solutions.

W I , they are

UI = m tan _ C I + m__2(l,p )

Denoting them by UI, VI and

-2 Ca y2 4+4#-m2
Y + m--'; +mZ[ 7-2_-mZJ

tm__l 1 2C_ -2 3C 4 -4} nrt@VI = tan _ C 1 + m__2(l_p ) y + mZ-7+2_ y sin @-_

-2

W I = {Cl+C2Y + C3y2 + C4y-4 ] sin nn___Q@1

(31)

When X = _j(j=5,6,7 and 8)

_. = 4m tan _ [-(2+>),-_I ]

J _j_' j
1

= -2_> tan = -- --
3 Aj Cj

(32)

which are obtained again from the first two of equations (15). The

bars introduced are simply to indicate that these coefficients are com-

plex numbers° To present the resulting solutions in a real form, let

1
_5 = "2 (C5-iC6)

I
_6 = "_ (C5+iC8)

1
_77 = _ (C7-iC8)

1
C 8 = ._ (CT+iC 8)

([33)
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yi f eif£nY =!
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I

cos(_ny) + i sin(_dny)

to these solutions which denoted by UII , VII and WII become

k 1/2 IIy_[ C6UII = m (2+_) tan _ ( _ ) Y- cos (f/_ny) - C5sin(]_ny)]

n_ @+ y-_[ -cs cos<j_y) + c7 sin(llny)]cos 0-_

y { y_[ (C5-C 6) cos(_ny) + (C5+C 6) sin (2_ny)_]

+ y-Y [-(C7-C 8) cos (f_ny) + (C7+C 8) sin (_ny)] -_I

i/Wll = y y [C5cos(]4ny) + C 6 sin _ny)

+ y-flC7cos(f_ny) + C8sin¢_ny)] sin @-_ (34)

In both equations (31) and (34) the summation signs are omitted.

The general homogeneous solutions consist of both sets of solutions

(31) and (34). The eight constants Cl, C 2 .... C 8 are to be determined

by the eight prescribed boundary conditions including edge loads at the

two circular ends.

The first set of solutions are simply the solutions of membrane

theory_ In other words, when A is a finite constant as k approaches

zero, the equations of membrane theory may be used for asymptotic

solutions° Based on this fact, the equations of membrane theory will

be used for the asymptotic particular solutions of the problem.

(2) Particular Solutions

The lateral normal load defined in expression (9) is confined in

such a form that

D (s_ = S r
* n k 2

or

pn(y ) = Lry2r (351)

I



where r is a given constant°
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Substituting expression (35) into equations (12) and equating

A = A _ = 2r+3 ,

the particular solutions are readily obtained by solving the three algebric

simultaneous equations (12) provided that _ is not equal to any one of

theAl, or Aj_ the roots of the determinanto WhenA* does equal one of the

roots, a particular approach must be used which will be demonstrated in

what follows.

I

I

i

I

I

I

Consider a case when the load is uniformly distributed in the s-

direction° (This is the load specified by the sponsoring agency for the

engine shroud.) In this case, P is unity, r = 0 and A_= 3 which is one
n

of the roots of the determinant of the asymptotic homogeneous solutions

given by (27). Since Imis a finite constant_ the corresponding particular

solutions may be obtained from the equations of membrane theory° These

equations are obtained simply by letting k = 0 in equation (6)°

Assume a set of particular solutions denoted by Up, Vp and Wp in

the form:

nnO

Up = n=l_ (dnl + dn2 Iny) y2 cos 0_-

I Vp = (bnl + _ny) y2 sin n_O
n_--I bn2 Ol

W = _ Cnl(l+Iny) y2 sin n_OP =I O--T (36)

and put

n_O

Pr = _n=l an sin--01

PO = 0= PS

jgwhere y = as before, dnl, dn2, bnl, bn2 and Cnl are constants to be

determined°
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Setting k = 0 and introducing functions (36) into equation (6),

I after cancelling out the sinusoidal functions, the following equations

are obta irked:

I

I
I

I

m[-md 2 + (5-_) be + tan _ CI] iny + m [-md I + _(5-_) b I + tan _ C I]

3 i mb 2_ 0+ _(l-_)d 2 + _(l+P) =

[m(l-2_) d2 + (l+_-_m z) b 2 + (2_-1) tan c C I] Iny + [m(l-2_)d I (37)

1 l+P 3 bz ] = 0+ (I+P- l_--_mZ) b I + _ (5_-2) tans C l - --4--mdz +

[-md2+(m+_)bz+tan _ cl]lny+[ -mdl+(l+_)bl+tan c C l + 1}b2] = aL
tan_ E_ .

12( I-_ 2)

The subscripts n have been dropped for simplicity.

I
Equations (37) are satisfied if the coefficients of the independent

variable y on the both sides of equations (37) are equal. Two sets of

I
I
I

I
I

I
I

I
I

equations may be obtained for the constants: The first set is obtained

by equating the coefficients of Iny,

n_-md2_(5-_)b 2 + tan _ C I] = 0

[m(l-2>)d 2 + (I+_ m 2) b 2 + (2_-I) tan _ C I] = 0 (38)

-ma 2 + (I+>) b 2 + tan _ C 1 = 0

o
and the second set is obatined by equating the coefficients of y

1 3n{-m_ + _ (5-)) b I + tan _ C I] + _ (I-_) _ (l+>)mbz = 0

_m I+> 3m(l-2#)d I + (i+_ 2)b I + _(5_-2)tan _ C I - -_-md2 + _b2 = 0 (39)

-mdl+(l+_)b I + tan _ C 1 + _b 2 = an 12(I-_ 2)tan _ E

Note that equations (38) are the same as equations (15) when k = 0

and A = 13 = 3. Since A = 3 is a root of the determinent of equations

(38), there are only two independent equations in equations (38)° Solving

for the five constants dl, d2, bl_ b2, and CI, from the five independent

equations of (38) and (39), the results are:

I

I

m

Up _oL tanl = _n an 3n 2ml= _c _ [2m 4 _ 3(5->) m 2 _ 3(i+_)]
n n

n

nx 0 (_0)

+ (mn2 - 7 + 2_) Iny)yZ cos 9-'-_"
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L I I e]vesin nn@
p = Eg tan _ 6 _ an[ 3(1-20) -mn - -_I

V

n

W 1 I 1 2-7+2P] "l+lny) sin nnO
p = E_ tan--n_ "3 _n mn[mn _ --@i

3. The Complete Solutions

The complete solutions are obtained by superpositions of solutions

(31)_ (34)_ and (40). From these complete solutions, the stresses and

moments may be determined by use of the elastic law (2). Before obtaining

the final results, it is necessary to determine the tangential and trans-

verse shearing forces on the boundaries° These forces may be derived

following Kirchhoff_s theorem, see Reference (3) o

Let S and T be the resultant shearing force per unit length in
S S

the transverse and tangential directions respectively due to shearing

forces and twisting moments in a plane normal to the s-direction and S@

and T@ be those in a plane normal to @-direction. Then it can be shown

that

I Ms@
Ss=Q s +'___

@

see

T s = Ns@ - Ms___@ tan
s (41)

S@ = Q@ + _Ms

T = N@S

where Qs and Q@ are obtainable from the equilibrium equations (4)°

Thus, by first combining solutions (31), (34) and (40) to obtain

the complete solutions and then substituting these complete solutions

into the elastic law (2) and equations ($i) the resultant forces and

moments may be determined° Note_ however_ that if the order of magnitude

of the functions of y in Uii, VII and WII is the same as the order of k °,.

then UI_ VI_ WI, WII and, the particular solutions, are of the same order of



I

I

I
I
I

I

I
I
I

I
I
I

I
I

I

I
I

I

Cl5

k ° while VII is of k I/4 and UII is of kl/2.

be j'astified later by a numerical example).

(The assumption made will

Hence as k approaches zero

asympototically_

U =UI +U P

V =V I +V P

W = WI + WII + WP

Applying a similar argument to the resultant forces and moments yields

the following results:

E_ tan = n an mn _-2(I-p) y mn mn[m -7,_-PJ

I 2 1 I I+P I 2 ? nTt9
+ [_m n - _(5-P) 2 m 7 + _(m n -7+2_) Iny]y e_ cos

V

C m 2_4(i+>iC_ 2
+ _ y2 + n " -,4y

n 91 '

2 C 3C
L 1 ( Cnl + n2 y-2 .n4 _ y-4

E6 tan _ _n an_ mnZ'2'(l-P) + mzn '- 7+2#

+61 [ 3(I-2_) - m2]Y2_n sin n_@9__,

L 1 _ -2

W = _ ta-_n_ _ a n[cnl + C y + Cn n2 r_

+ y-l[yf(CnsCOS(_Iny) + Cn6 sin (flny))

+ y-f(Cn7COS(_Iny) + Cn8 sin (flny))]

2m
n 2

+-T[ m n

2 -4
y +C y

r_

} n_O- 7 ÷ 2_][1 + r_y]y sin-_1.

_W I I I -31yf [(f-l) Cn5 +fCn6) cos _Iny)_-_ : E6 tan-_ _ _ any
n

+(('y-l) Cn6 -_Cn5) sin (J_Iny)]+ y-f[(-(_+l)Cn7 +fCn8) cos(flny)

- ((f+l) Cn8 +_Cn7), sin(flny)]}, soz_l_n_9 ,

C 3(]

N - L _ a {-2 [ n2 -_9 n_ -. ]s tan _ n m _-2(l-p) y + m z-7+2 Y (4.2)
n n n

n'_{)1 [3_mn2]y2 sin-- ,
+ _ 91
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L
N@ = tan a Z anY2 sin nz._OQ

n @I '

T s = NS@ = T0 =
n'_ @

L y 6Cn4 -4 m y_ cos --
tan a Zn an[mn(mnZ-7+'2V) y - _ QI '

L 2 k) _2

Ms = _ 2('I-_) _ n _nYlYf[Cn6C°s(flny) - Cn5sin(_Iny)]

-Y-)°[Cn8COS(flny) - Cn7 sin(flny)_]_ sin nrE.__Q
01

M e =_M s ,

L k_ a

s = _ 'U(I-p z) Z an
n

-1 cos(f lny)
y. / Yf[ (-Cn5+Dn6)

- (Cn6 + Cns)sin (ylny) ] + Y-fl(Cn7 + Cns) cos (flny)

+ (Cn8-Cn7) sin(flny)]# sin_iQ '

L k 2

n
a.ny'l_yY[(blCn5 + b2Cn6) cos (flny)

+ (blCn6 -b2Cns) sin (_Iny) + y-Y[(blCn7-b2Cn8 ) cos(_Iny)

+ (blCn8 + b2Cn7) sin (_Iny)] cos @--_-- ,

3

where b I = _ (I-_) tan _,
I

b 2 = _ (2-)) m °
n

In the foregoing results, the two sets of homogeneous solutions are

coupled only in the displacement W - the membrane forces are functions

of the first set and particular solutions while the moments and transverse

shearing forces are functions only of the second set of homogeneous

solutions.

4. An Example - The Engine Shround

Consider the ease of an engine shroud as an example° The smaller

circular end of the engine shroud is fixed and the other end free°

i
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Thus requires:

_w
U =V =W =-- =0

@S at y =_= g

N = M = T = S = 0 at y = I.
S S S S

The first four conditions are satisfied if, from the first four equations

of equations (36),

I I I y_2 m 2-4.(I+#)

C + _ C + _ C + zn[ z_7+2P j _-4Cn4
n nl m _-2(l-P) n 2 m n 3 m mn n n n

(iv)

i 2 I I I+# I
+ [_ mn - -2 (5-#) 2 m _ + _ (mn2-7+2_) In_] _2

_ 0

n

and

Cnl 2 I 3 I I

+ m _-2(I-_) _ Cn2 + m 2-7+2_ _ Cn4 + 6[ 3(I-2_)-mn2]¢2=0
n n n

(iii)

+ Cn6sin(fln_)] + $f[Cn7COS(yln_) + Cn8sin(fln_)])
2

m 2

n 2 2_>] [ 1 + In_] _ 0+--_--[ m -7+
3- n

(viii)

_fI[(_-l)Cn5 + Cn6] cos (/In_) + [(f-l) Cn6-_Cn5] sin (fln_)}

+_-"tI[-(_+l) Cn7 +Yen8] cos (fln_) -[(_+I) Cn8 +_Cn7] sin(jeln ))= 0

(vii)

The other four conditions at y = 1 yield:

I 3 Cn4] + I-2 I m _-2(I-#) On2 + m _"-7+2_ 6 [ 3-mn2] = 0 (ii)
n n

C 6 -C 8 = 0 (v)
m

6 n

mn(mnZ_7+2#) Cn4 --_ = 0 (i)

-Cn5 + Cn6 + Cn7 + Cn8 = 0
(vi)
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The eight constants in this particular case may be determined_ one

by one, by following the order of the equations indicated by Roman

numerals° The results are as follows_
m 2-1

_ n _[ 2 _2j\)] _ 2
Cnl 6 [ mn -3( 1 +

1 [m = - 2(1->)] <m 2-1)
Cn2 = - _ n n

3(m e-l) m 2

_ gr

1 2 1Cn3 = -ran2 [_ mn - _(5-_) i I+_ i , 2-7+2>) In_,
2 m =]+ _ <mn

C

n4 18

n

Im2-1
. _[mnl 2 _ 3(I-2#)] + _ n

m 2 [m 2 _ 7 + 2_ ] _="
n n

m z + 2(I÷#) _
1 n !

Cn5 = (2+8) Cn6 "4.5"_

where

Y_ ( 3f-2)cos(f In _)-(f+l) sin_° In i)]+_-_[f cos(f In _)-(9+ I) sin(Y in_)]

_;[y sin(y in_) -(y -I) cos(f InO] + _ "fly sin(y In_) +(f+l) cos(2 Ing) ]

2
m a

--n--n3[ (mn2-7+2_)(l+In_)]_ +CI_+Ce_-I+c3 _ + C4 _-3

C6 = gf[(2+8)cos(fln_) + sin(ylng)] +gd[_cos(yln_)+ sin(J'In()]

C 7 = _C 6

and

C 8 = C 6

The following data are used in the numerical computations_

1
O = 180 ° , c = 75 °, #= _, L = 373,312:: (46)
1

Two types of lateral normal load are considered° One type i.s

symmetrical, the other, antisymmetrical° The symmetrical load is

assumed to be of form

p=psin0

Hence refering to equation (9)

a = pn

=O

for n = 1

for n > I (481]"

I
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The antis]nunetric load is assumed to be of the form

"/5' 1p = _ p (sin @ + _ sin 2 @),

Thus

4

an = _ (_ p for n = 1

1 .4/T=-(, p) -,_ =2

(491)

C19

= 0 n> 0 (50)

The two types of loading are depicted in Fig° (2)°

Thus, for the cases mentioned above, only the solutions for n = 1

and 2 need to be carried out° The only parameter still to be determined

is the thickness t at s = L denoted by t _ . The thickness is determined

by a trial-and-error method.. To cover a wide range of the possible

thickness, t' = 0.4", 0.6" and 0.8" are assumed. Refering to equations

+

(i) and (6a) and (29) the corresponding values of k are computed_ and

given in Table Io

TABLE Io THE VALUES OF k AND

t' 0.4" 0o6" 0.8"

8,92'7 X 10 =8 2°008 X 10 -7 3.571X 10 -7k

jp 153o48

,,,

125o32 108o53

Substituting the known quantities into expressions (4.5) the eight

constants are readily computed° In turn_ the displacements and forces

may be obtained from equations (42) o The computations have been pro-

grammed in Fortran Language and carried out by the University's Univac

Solid State 80 Computer. The results are presented in the following form

I

I

For stiffened shell.s, see popo 22 and 23 Reference (I) o For such cases_

instead of the tnickness; the values of the parameter k are concer_ed._

I
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nTr 0

F(y,_) = Cfn(y) nrtO

cos _ (511

L 2 i

where C is a coeffieient_ C = Et---T p for displacements C = L2p for

moments, C = Lp for forces and fn(y) are dimensionless functions, whose

numerical values are tabulated in Tables Ill to V_ and depicted in

Figures 3 to 14, for _=0.81 or _= 0°90.

The assumption made in determining the order of magnitude of the

solutions that the functions of y are of the order of k °, now may be

justified by the following facts for the present case° The constants

Cn5 , Cn7 , and Cn8 = obtained from equations (391 are of the same order

as Cn6 which is of the order of _-_ Thus, the y-functions are of the

order of (_)Y or k °. Because the bending effects are confined to a

narrow region near the fixed edge ......w_L=_=y = _.

In this example, the deflection of the free end given by Figures

(5) and (II), is comparatively large to the thickness° For such large

displacement, the theory is applicable provided that the shell is not

overstrained [6] Therefore the strains at the fixed end control the

validity of the results.

IV. CLOSING REMARKS

The key to the present solution lies in the development of a new

method of solving the algebrie equation_ The method is quite similar

to the so called perturbation method° The perturbation method_ howe ver_

is used in expanding differential equations°

This method is likely good for the present problem onlyo The

lateral deflection of cylinderical shells, for example_ is governed by

the following equation, from Reference (4)°

xv
k _Sw t(l->1 e w = 0
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or

Let

then

kf(A) + (I-_)2,_ 4 = 0

A 2 = x 0 + kx I ,

_f(x 0) + 2XlX0(l-#2) 1 + (l-p)x02 = 0

Therefore, x C = 0 but x ! is not determined° Thus, this approach fails

although X02 = 0 does provide the roots of membrane theory.

The solution obtained is an approximate one. Its accuracy depends

on the parameters k and m = (m_
@I sec c) o Better results will be obtained

for smaller values of k and m. An estimate of the error involved in the

example in using the asymptotic roots of A is made by comparison of the

asymptotic values with those computed from expressions (25) and (26)°

The comparison is shown in Table 2, for @I = _ and c = 75o°
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I

I

I
I
I

I
I
I

I

I
I

k

A )

2

_B
4

t ?

t-_ t,t?

U_M"

0o6 _C¸

O, 8 "_?

0o6 _

O, 8 _

v?

O, 6 _?

_o 8 _'

n = 1

+0.999999

±0.999997

+0.999995

+3.00003

.+3,00007

n=2

+ Io 0523

+I. 1142

+1o1955

±2.9851

+2.9663

±3.00013 +2°9397

Asymptotic
Values

+ 1

__I

+i

t3

t 3

+ 3

+153o27(1,0027±i)

+125.09{ 1.0035!i)

tI08o28<io0045+i>

+152 o 75(1,0099+i)

1124o51< 1,0149ii)

±107o 77{ 1,0198+ ii_

Lt153048_'Iti)

+125 o32< ill),

ilO8,53<i l_i,

I
I

I
I
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It is clear that when n = I, the solution will result in very good

accuracy° When n = 2, some error is introduced° However, the load

amplitude of the function for n = 2 is only one half of that for the

function of n = 1 in the case of the antisymmetrical loado Consequently

the error will be proportionally reduced° Thus_ one may conclude that

the results presented in Figs. 3 to lq. would be good enough for practical

design purposes° Should a better error estimate be desirable_ it is

necessary to elaborate the solutions based on the roots computed from

expressions (25) and (26). Nevertheless, the present solution is an

exact asymptotic solution.

This asymptotic solution helps in understanding how the displace-

ments and stresses function in a cone structure. The membrane displace-

ment and stresses predominate most of the region of the cone° The

bending effect is pertinent only near the supporting edges. This effect,

called edge effect or boundary layer phenomenon, has been observed in

spherical shells, in Reference [5]° The lateral displacement w function.s

as a bridge between the membrane and bending effects_

The present results could be converted into solutions for a complete

cone by interchanging the sinusoidal functions in the displaceme'_ts° As

a matter of fact, the eight roots of A remain in the same°
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APPENDIX I, ON THE APPLICATION OF THE RESULTS

I. Take the case when t' = 0.6" or k = 2.008 x 10 -7 as an example for

the purpose of illustration. In what follows, only the displacement

of the free end and the forces at the fixed end will be concerned.

A. When the lateral load is symmetrical, the maximum values of the normal

displacement and forces are easily obtained by referring to Figures

3 to 8 and Tables iII and IV. For example, taking E = i0 x 106 lb.

per square inch, one has the following maximum values:

Lp 0.0564 p in. at @
W = 2.433 x T = = _'

10-4 in-lb
M s = 1.049 x L 2 p = 14.6 p .---r----in at 8 =-2,

10-4 IbS = 3.535 x L p = 0.1320 p .--- at @ = 0, _,
in

Ib

T s = 0.2462 x L p = 91.7 p .---_n at O = 0, _,

Ib

N s = -0.1598 x L p = -59.6 p .---In at @ =

where p is the maximum load intensity in lb. per square inch. It

is negative when it acts toward the center of the cone.

B. When the load is antisymmetrieal, the maximum displacements and

forces occur at angles which make the first derivative with respect

to 0 vanish. For example,

4 I
M s = _ _ [ 1,049 sin @ + _ 1.447 sin 2@ ] x 10 -4 L 2 P

Let

dM
s

= 0
dO

then

0 = 57o30 ,

and

Ms] max

in-lb
= 16.41

in.
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In a similar way,

4 [0.1598 sin @ + _ (0.4684) sin 2@ ] L pN s = -_

Ib
Ns]ma x = -101.2 p _ at @ = 51°00 '

4 _ L 2W = _ _-_[2.433 sin @ + (7.282) sin 2@] _ p

W] = 0.0974 p in at @ = 51°00 '
max

The following forces are maximum at @ = 0.

I 2@] 10 -4 L p4 _[ 3.535 cos @ + _ (16 38) cosS@=_

Ib
S@] = 0.3370 p ._

1
4 _[0 2462 cos @ + _ (0._924) cos 20] L pr s = _

lb
T s = 141. p .--max in

Note that there are considerable differences between the results

of the symmetrical and antisymmetrical loadings at the same load

intensity.

2. The order of magnitude of the transverse shearing forces, S@, in

both the cases of symmetrical and antisymmetrical loadings is the

lowest among the forces. Further, the small shearing forces carried

by supports along the two straight edges are appreciable only near

the fixed end of the segment, as is shown by the curves for S@ in

Figures 6 and 12. This fact justifies the alteration of the free

straight edges of the engine shroud to edges which are free from

normal moments and forces but not transverse shearing forces.

However, the computed shearing forces should be taken into consider-

ation in the design of the side edges.

I
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APPENDIX II. NOTATION

The following symbols have been adopted for use in this report:

a
n

A Bn, Cn' n

= coefficient of lateral normal loads defined in Eq° (9)_

= coefficients of solutions of displacements defined in

Eqs° (8);

do °

z3

D

E

= coefficients given by Eqs. (13);

Et

= tensional rigidity of shell = i_--/_2;

= Young's modulus of elasticity;

G, gn

k

K

L, LI

= coefficients defined in Eqs. (18);

= parameter of bending effect = --_-$

Et_
= bending rigidity of shell =

12(l-_Z) ;

= distances measured from the apex along the conical sur-

face to the free end and fixed end of the segment of

mn, m

M M Gs'

the cone respectively_

nK

= _ sec _ ;

= normal moments per unit length in planes perpendicular

to s and @ directions;

Ms@, M@s = twisting moments per unit length in planes perpendicular

to s and @ directions respectively;

N
s' N@ = normal forces per unit length in planes perpendicular to

s and Q directions respectively$

N sQ' N0s = tangential shearing-forces per unit length in planes

perpendicular to S and Q directions respdctively_

P
s _ PQ' Pr = surface loads per unit area in the directions of s, @

and the normal-to-the-middle-surface respectively$

= transverse shearing forces per unit length in planes

perpendicular to s and 0 directions respectively_

I
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s

S s , S 9

t

t'

T s , T 9

U, V, W

UI, VI, WI

UII , Vll , Wil

Up, Vp, Wp

X 0 , xl

Y

9

O1

)n

3i,_j
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= distance measured from the apex along the conical

surface;

= resultant transverse shearing forces due to Qs' Qg'

Ms@ and M@s ;

= thickness of shell;

= thickness of shell at s = L;

= resultant tangential shearing forces due to Ns@ ,

Ngs , Ms@ and Mgs ;

= components of displacement in the directions of s,

9 and the normal-to-the-middle-surface directions

respectively;

= first set of homogeneous solutions of U, V, and W;

= second set of homogeneous solutions of U, V, and W_

= particular solutions of U, V, and W%

= unknowns defined in Eq. (19);

= angle between the conical surface and a plane perpen-

dicular to the axis of the cone_

= constant defined in Eq. (25);

t

=s %

= angle between two meridians%

= angle between two edge-meridians of the shell segments

= characteristic constant defined in Eqo (II);

= eight roots ofA, i = I_2_3 and 4, j = 5,6,7 and 8.

= Poisson's ratio$

i
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Differential Notation: Differentiation with respect to s and Q

coordinates are indicated by dot (o) and prime (,) respectively.
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This appendix was previously submitted as Technical Report D for

contract NAS 8-5168.



Technical Report D for NASA Contract NAS8-5168 /

Literature Survey With Abstract s ___
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During the performance of NASA Contract NAS8-5168, a literature

survey was undertaken to identify current publications pertaining to

the subject matter included in the work scope of this contract.

Through the facilities of the Office of Scientific Information of NASA

and the Defense Documentation Center for Scientific and Technical

Information, copies were obtained of many of the publications that

appeared to contain information of value to the members of the project

staff. Abstracts were prepared of those publications that contained

particularly useful data or information.

This report is presented in two parts. Part I consists of a list

of all the publications that have been obtained and are now available

for use in the Library of the Department of Aerospace Engineering.

Part II consists of the abstracts that were prepared during the per-

formance of Contract NAS8-5168.

Part I - List of Publications

.

0

.

Abraham, L. H. and Lowy, M. J. : Shell Instability Problems as

Related to Design° NASA TN D-1510, December 1962, pp. I-I0.

Air Force Systems Ccmnand: Proceedings of Symposium on Aerothermo-

elasticity. Aeronautical Systems Division, Air Force Systems

Command, Wright-Patterson Air Force Base, Ohio, Technical Report
61-6A5, February 1962.

Alesch, C. W.: The Flexure Toughness Concept. General Dynamics

/ Convair_ San Diego, California, Engineering Research Report ERR-
SD-169, January 1962.

Allentuch, A. and Kempner, J. : Stresses in Eccentric Stepwise Dis-

continuous Reinforcing Rings with Transition Section. Polytechnic

Institute of Brooklyn, PIBAL Report No. 651, December 1962o
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13°

14o

15o

16o
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Allinikov, So : Cylindrical Sandwich Construction Design°

Wright Air Development Division, WADD Technical Report 60-133,
February 1960o

Amiro, Io Yo : Investigating the Stability of a Ribbed Cylindrical

Shell During Longitudinal Compression. Foreign Technology Divi-

sion, Air Force Systems Command, FTD-TT-62-1622. (Translated

from: Ukrainian Periodical, Prykladna Mekhanika, Vol.6, Nr.3, 1960,
pp° 272-280° )

Amiro, I. Yo : Studying Naximum Load for Ribbed Cylindrical Shells
Subjected to Simultaneous Effect of Axial Forces and Internal

Pressure. Foreign Technology Division, Air Force Systems Command,
FTD-TT-62-1625. (Translated from: Ukrainian Periodical, Prykladna
Mekhanika, Vol.7, Nr.5, 1961, pp. 496-502.)

Anderson, Mo So: Combinations of Temperature and Axial Compression

Required for Buckling of a Ring-Stiffened Cylinder° NASA TN D-1224,
April 1962o

Anderson, Mo So: Buckling of Ring-Stiffened Cylinders Under a Pure

Bending Moment and a Nonuniform Temperature Distribution° NASA
TN D-1513, November 1962o

Anderson, Mo S.: Thermal Buckling of Cylinders. NASA TN D-1510,
December 1962, ppo 255-265.

Ando, No: On the Strength of the Orthogonally Stiffened Plate--ist

Report--Theoretical Solution of Orthotropic Plate Subjected to

Bending, Ministry of Transportation, Tokyo, Japan, March 1962.

Ando, No: On the Strength of the Orthogonally Stiffened Plate--2nd

Report--Experimental Studies on Bending of Orthogonally Stiffened

Plate and Comparison with the Bending Theory of Orthotropic Plate°
Ministry of Transportation, Tokyo, Japan, November 1962o

Antebi, Jo, Smith, Ho Do, Sharma, So Do, and Harris, Ho Go:

Evaluation of Techniques for Constructing Model Structural Elements°

Massachusetts Institute of Technology, Research Report No. R62-15,
May 1962o

Armenakas, Ao Eo, and Herrmann, Go: On the Buckling of Circular

Cylindrical Shells Under External Pressure. Columbia University,
Project 9787, Contract AF 49 (638)-430, Technical Note 7, August
1962o

Ashwell, Do Go: The Equilibrium Equations of the Inextensional

Theory for Thin Flat Plates° Quarterly Journal of Mechanics and

a_=_ M_thematics, Volo 10, 1957, ppo 169=182o

Au, To and Hribar, Jo Ao: On the Solution of Thin Elastic Shells

of Revolution° Journal of Aerospace Science, Volo 28, No° 6, June
1961_ ppo 510-511o
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18.

Babcock, Co Do: The Effect of Initial Imperfections on the Buck_

ling Stress of Cylindrical Shells. NASA TN D-1510, December 1962,

pp. 135-142o

D3

Baird, B_ Lo_ Studies of Design Criteria for Welded Structures

Subjected to A Biaxial Stress Field° Aeronautical Systems

Division_ Air Force Systems Command, Wright-Patterson Air Force

Base, Ohio, Technical Documentary Report No. ASD-TDR-62-1109,
January 1963_

19. Battelle Memorial Institute: A Guide to the Scientific and

Technical Literature of Eastern Europe° National Science Founda-
tion, NSF-62-49, October 1962o

20. Becker, H. and Gerard, G.: Torsional Buckling of Moderate Length

Cylinders° Journal of Applied Mechanics, Vol. 23, No. 4,
December 1956, pp. 647-648.

21.

22.

23.

24°

25°

26°

27.

28°

29°

Becker, H._ Handbook of Structural Stability, Part II- Buckling
of Composite Elements. NACA TN 3782, July 1957o

Becker, Ho_ Handbook of Structural Stability, Part VI-Strength
of Stiffened Curved Plates and Shells. NACA TN 3786, July 1958.

Becker, Ho, Gerard, G. and Winter, Ro: Experiments on Axial

Compressive General Instability of Monolithic Circumferentially

Stiffened Cylindrical Shells_ New York University, Research

Division, Technical Report No. SM 62-5, May 1962.

Berkowitz, Ho Mo: Elastic Deformations of Conical Shells, Equation

of Equilibrium for Large Elastic Deformations of Relatively Thin

Turncated Conical Shells. Fairchild Stratos, Aircraft Missles

Division, FS-A_, R 62-1, September 1962.

Bijlaard, Po Po: Stresses From Local Loadings in Cylindrical

Pressure Vessels. Transactions AoSoM.E_ Volo 27, 1955, ppo 805_
816.

Bijlaard, Po Po: Buckling of Conical Shells Under External
Pressure° NASA TN D-1510, December 1962, ppo 4Ai-450.

Binz, Wo Eo_ Jro: Design and Test Experiences With Instability of

Major Airfram Components. NASA TN D-1510, December 1962, ppo
135-142o

Biot_ Von Mo Ao: Elastizitatstheorie sweiter Ordnung mit

Anwendungeno Zeitscrift fuer Angewandte Mathematic and Mechanik,

Vol. 20, April 1940.

Black, Co Eo: Composing Mathematics on a Typewriter. Land_Air,

Inco, Paradyn Division, Report No° 41, Contract N-124(61756)
19425 A/PMR, November 1957o
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30. Bolotin, V. V. : Statistical Methods in the Nonlinear Theory
of Elastic Shells. NASA TN F-85, December 1962.

31. Bowie, O. L. : Design Criterion for Circumferential Ring Stif-
feners for a Cone Loaded by External Pressure. Watertown

Arsenal Laboratories, WAL 8931/199, November 1957.

32. Brenner, Jo L.: A Set of Matrices for Testing Computer Programs.

Mathematics Research Center, U. S. Army, University of Wisconsin,
MRC Technical Summary Report No. 325, May 1962.

33° Browr., W. S.: Solution of Biquadratic Equations. Aircraft En-

gineering, Volo 16, January 194A, pp. 14,17.

34. Brush, D. Oo: Some Shell Stability Problems in Missile and

Space Vehicle Analysis. NASA TN D-1510, 9ecember 1962, pp.
35-4_.

35. Budiansky, B., Seide, P., and Weinberger, R.A.: The Buckling of

a Column on Equally Spaced Deflectional and Rotational Springs.
NACA TN 1519, March 1948.

36. Budiansky, B.: Buckling of Clamped Shallow Spherical Shells.

Division of Engineering and Applied Physics, Harvard University,
Technical Report No. 5, Contract Nohr 1866 (02) for Office of

Naval Research, August 1959.

37. Budiansky, B. and Sanders, J. L.: On the "Best" First-Order

Linear Shell Theory. Division of Engineering and Applied Physics,
Harvard University, Technical Report No. 14, September 1962°

38. Budiansky, B. and Roth, R. S.: Axisymmetric Dynamic Buckling of

Clamped Shallow Spherical Shells. NASA TN D-1510, December 1962,
pp. 597-606°

39° Burggraf, Oo R., and Schuerch, H. U.: Analysis of Axisymmetric,

Rotating, Pressurized Filamentary Structures. NASA TN D-1920,
May 1963o

40. Burns, Jo Jo, Jr°, Popelar, C. H., and Foral, Ro F.: Buckling of
Missile Shell Structures Under Transient Pressure. Martin Com-

;_ pany, Denver_ Colorado, Aerospace Division, IR-62-17, May 1962.

Burns, J. J., Jr.: Experimental Buckling of Closed Shells of

Revolution° Martin Company, Denver, Colorado, Aerospace Division,
IR-63-4, March 1963.

Chan, S. P.: Modified Finite Difference Method for Computers°

Symposium on the Use of Computers in Civil Engineering,

Laboratorio Nacional de Engenharia Civil, Paper No. 65, October
1962.

_3° Card, Mo Fo and Peterson, J. P.: On the Instability of

Orthotropic Cylinders. NASA TN D-1510, December 1962, ppo 297-
308°
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44. Cherhykh, K. F. : Conjugate Problems of the Theory of Thin Shells.

Journal of Mathematics and Mechanics, January 1961.

45° Chien, W. : The Intrinsic Theory of Thin Shells and Plates.

Quarterly Applied Mathematics, Vol. l, 1943, pp. 43-59, 120-135.

46, ,thuang, K. P. and Veletsos, A. S. : A Study of Two Approximate

Methods of Analyzing Cylindrical Shell Roofs. University of

Illinois, Contract No. 1834, October 1962.

47, Conner, Jo, Jr.: Nonlinear Transverse Axisymmetric Vibrations

of Shallow Spherical Shells. NASA TN D-1510, December 1962, pp.
623-642.

48. Coppa, A. P.: The Buckling of Circular Cylindrical Shells

Subject to Axial Impact. NASA TN D-1510, December 1962, pp. 361-
400.

49.

50.

51.

52.

53.

54.

55.

Coppa, A. P. and Nash, W. A.: Dynamic Buckling of Shell Structures

Subjected to Longitudinal Impact. ASD-TDR-62-774, Aeronautical

Systems Division, Air Force Systems Command, Wright-Patterson
Air Force Base, Ohio, December 1962.

Corum, J. M.: An Investigation of the Instantaneous and Creep

Buckling of Initially Out-of-Round Tubes Subjected to External

Pressure. Oak Ridge _Mational Laboratory, Tennessee, ORNL-3299,
Janua ry_f1963•

Cowper, G. R.: Stress Concentrations Around Shallow Spherical

Depressions In A Flat Plate. National Research Council of Canada,
Aeronautical Report LR'340_Ap_il 1962.

Crichlow, Walter J.: A Review of Some Available Techniques for
Predicting General Instabilityef Shell Structures. NASA TN

D-1510, December 1962, pp. 731-742.

Cunningham, J. Ho: Design and Testing of Honeycomb Sandwich

Cylinders Under Axial Compression. NASA TN D-1510, December 1962,

pp. 341-360.

Davidson, J. R. and Sandoriff, P. E.: Environmental Problems of
Space Flight Structu_ _. II-Meteoroid Hazard. NASA TN D-1493,

January 1963°

Davidson, T. E., Eisenstadt, R. and Rein, r, A. N.: Fatigue

Characteristics of Open-End Thick-Walled Cylinders Under Cyclic

Internal Pressure. U. S. Army Weapons Command. Watervliet Arse-

nal, WVT RI 6216, August 1962.

56. DeHart, Ro C. and Basdekas, N. L.: Investigation of Yield

Collapse of Stiffened Circular Cylindrical Shells With a Given

Out-of-Roundness. NASA TN D-1510, December 1962, pp. 245-254.
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67.
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69.
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DeSilva, C. N. and Naghi, P. M. : Asymtotic Solutions of a Class

of Elastic Shells of Revolution With Variable Thickness. Quar-

terly of Applied Mathematics, Vol. 15, No. 2, July 1957,
pp. 169-182.

Dill, Ellis H. : On the Buckling of Thin Elastic Shells. NASA

TN D-1510, December 1962, pp. 105-113.

DJuan, D.: The Buckling Under Pressure of a Stiffened Cylindrical
Shell. Luftfahrtforschung, Vol. 9, P. 35.

Donnell, L. H.: Stability of Thin-Walled Tubes Under Torsion.

NACA Technical Report &79, 1933, pp. 95-116.

Dow, M. B. and Whitley, R. 0.: Room-Temperature Shear and Compres-

sion Tests of Stiffened Panels with Integral or Attached Cooling
Circuits. NASA TND-1A99, March 1963.

Dow, M. B., and Peterson, J. P.: Bending and Compression Tests of

Pressurized Ring-Stiffened Cylinders. NASA TN D-360, April 1960o

Edwards, R. J.: Elasto-Plastic Analysis of Structures Under Load

and Two-Dimensional Temperature Distributions. Volume III.

Experimental Evaluation of the General Time-Dependent Analysis.

Aeronautical Systems Division, Air Force Systems Con_nmnd, Wright-
Patterson Air Force Base, Ohio, Technical Report No. ASD-TR-

61-667, Vol. III, March 1963.

Estep, R.: An Aerospace Bibliography. Documentary Research

Division, Research Studies Institute, Air University, AU-290-61

-RS1, September 1962.

Evan-Iwanowski, Ro M. and Loo, T. C.: Deformations and Stability

of Spherical Shells Under Action of Concentrated Loads and Uniform

Pressure. Syracuse University Research Institute, SURI Report No.

83A, June 1962.

Evan-Iwanowski, R. M.: Deformation and Stability of Spherical

Shells Subjected to Action of Asymmetrical Loadings-Experimental
Study. NASA TN D-1510, December 1962, pp. 571-586.

Ezra, A. Ao: Similitude Requirements for Scale Model Determination

of Shell Buckling Under Impulsive Pressure° NASA TN D-1510,
December 1962, pp. 661-670.

Findley, W. No: Theories Relating to Fatigue of Materials Under

Combinations of Stress. Engineering Materials Research Laboratory,

Division of Engineering, Brown University, U. S. Army Ordinance
Corps, Contract DA-19-O20-OP_3520, Project 7B2-O001 (13A8),

Technical Report No. 2, June 1956o

Fitzgibbon, D. P.: Experimental Method for Testing Materials in

Biaxial Stress Fields. Space Technology Laboratories, Los Angeles,

STL / TR-60-0000-09028, February1960.
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70. _lugge, Wo: Die Stabilitat der Kreiszylinderschaleo Ingenieur-
Archiv, Volo 3, 1932, pp. 463-506°

71o Flugge, Wo and Baker, Bo Ro: A Large-Deformation Bending Theory

for Thin Cylindrical Shells. Stanford University Division of

Engineering Mechanics, Contract Nonr 225(16)(NR-O6A-A12), June
1959o

72. Flugge, W° and Steele, C. Ro: Toroidal Shells with Nonsymnetric

Loading. Stanford University, Division of Engineering Mechanics,

Contract Nonr 225(16)(NR-O6&-_12), Technical Report No. 122,
O_ 1959.

73. Flugge, Wo: Thermal Bending Stresses in Shells - Final Report.

Stanford University, Division of Engineering Mechanics, Contract
Nonr 225(16)(NR-O6A-&12), Technical Report No. 12A, November
1959.

7_o Forray, M. J., Newman, Mo, and Vossar, J.: Thermal Stresses and

Deflections in Rectangular Panels° Part 1 _ The Analysis and

Test of Rectangular Panels with Temperature Gradients Through
the Thickness. Aeronautical Systems Division, Air Force Systems

Command, Wright-Patterson Air Force Base, ASD TR-61-537, Part l,
December 1962.

75° Forsyth, P. F.: Vacuum Considerations of Space Environment. Bell

Aerosystems Company, Report No° 8500-920002, January 1962.

76° Fowler, A. Ho, and Wilson, C. W.: Cubic Spline, A Curve Fitting

Routine. Union Carbide Nuclear Company, AEC Research and Devel-

Dpment Report Y-l_O0, Mathematics and Computers, September 1962.

77° Freudenthal, A. M°, and Bieniek, M. P.: Some Problems in Phenome-

nological Fracture Mechanics° Aeronautical Systems Division, Air

Force Systems Command, Wright-Patterson Air Force Base, Ohio,

Technical Documentary Report No. ASD-TDR-63-221, March 1963o

78. Fulton, Ro Eo: Buckling Analysis and Optimum Proportions of

Sandwich Cylindrical Shells Under Hydrostatic Pressure. Depart-

ment of Civil Engineering, University of Illinois, Structural
Research Series No. 199 &28000, June 1960o

79.

80.

Fung, Yo C. and Wittrick, W. H.: A Boundary Layer Phenomena in
the Large Deflection of Thin Plates. Quarterly Journal of

Mechanics and Applied Mathematics, Volo 8, No. 2, June 1955,
pp. 191-210o

Fung, Y. C.: On Corrugation-Stiffened Panels. Graduate Aeronau-

tical Laboratories, Califorr_a Institute of Technology, N62-
16159, June 1962.
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drostatic Pressure. Reprint of a Paper Presented at the Meeting
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Galletly, G. D. and Raddock, J. R.: On the Accuracy of Some Shell

Solutions. Transactions A.S.M.E., December 1959, pp. 577-583.
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nautical Sci_nce_, Vol. 24, No. _ 19_6, pp. 269-27_.

Gerard, G. and Becker, Ho: Handbook of Structural Stability, Part
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York University, College of Engineering, Research Division, Techni-

cal Report SM 62-4, May 1962.
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i. Amiro, I. Y.: Investigating the Stability of a Ribbed Cylindrical

Shell During Longitudinal Compression. Foreign Technology Division,

Air Force Systems Command, FTD-TT-62-1622. (Translated from: Ukrainian

Periodical, Prykladna Mekhanika, Vol.6, Nr.3, 1960, pp. 272-280.)

Critical buckling stress in stiffened circular cylinders with dis-

crete stiffeners with rigid closed ends is considered for the case of

longitudinal compression.

A form of the buckled mode shape is used that is consistent with

the predictions of thin shell theory (without discrete stiffeners). The

assumed mode shape is introduced into the compatability relation yield-

ing a stress function. The internal energy is expressed as the sum of

the energy stored in the shell, the stiffeners, and the bulkheads. An

expression for the energy of the external forces is also written. To

these expressions, the principle of minimum potential with respect to

the amplitudes of the mode shape is applied yielding two simultaneous

equations in the mode shape amplitudes. Orthogonality is applied to un-

couple these equations. From the resulting equations the critical stress
was obtained. The critJc_ __brnss reduces to the well known value in the

case of a thin shell withou_ _tiffeners. For each problem it is neces-

sary to minimize the expression for the critical stress with respect to

the wave length parameters.

General instability and individual problems arising when restric-

tions were placed on the deformations of the longitudinal and circular

stiffeners (9 cases including general instability) are considered for a

specific cylinder with a radius of lO0 centimeters and a thickness of 0._

cm. Data is reduced and presented in tabular form. Calculations are

made for various numbers of half wave lengths ranging from _ to 31 in the
tangential direction and from 1 to 63 in the longitudinal direction for

the general instability case and two of the restrictive cases. It was

generally found that an increase in the length yields a decrease in the
critical stress.

Another specific example uses a cylinder with a length of 628 cm.,

a radius of lO0 cm., and a thickness of 0._ cm. reinforced with 2_ longi-
tudinal ribs and from 1 to 3 circular ribs with uniform spacing. General

instability and 5 other restrictive cases were considered. Data for the

lowest value of critical stress obtained by varying the half wave para-

meters is presented in tabular form along with the number of half waves

in the longitudinal and tangential directions corresponding to the lowest

critical stress. Orthotropic results are also compared in tabular form.

The results are similar for general deformation (orthotropic theory pre-

dicts slightly lower critical stresses) but for the restrictive cases

the critical stresses predicted by orthotropic theory are shown to be

AO per cent lower in some cases.

The author is at Academy of Sciences, Ukraine SSR, Institute of Mechanics.
3 References.
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2. Amiro, I. Y.: Studying Maximum Load for Ribbed Cylindrical Shells
Subjected to Simultaneous Effect of Axial Forces and Internal Pressure.

Foreign Technology Division, Air Force Systems Command, Wright-Patterson

Air Force Base, Ohio, FTD-TT-62-1625/1 2, January 1963o

A method is presented for determining the critical buckling load for

ribbed cylindrical shells subjected simultaneously to axial load and in-

ternal pressure° The critical axial load was determined by the energy
method. Possible buckling modes are discussed for discrete ribs. An

idealized cylinder without ribs is used to describe the deformation shape
of the skin.

The elastic stability is first considered by substitution of an

assumed buckled mode shape into the compatibility and equilibrium equa-

tions to obtain the stress f,_uction_ An expression for the critical

longitudinal stress is derived from the principle of minimum potential.

Buckling mode shapes are discussed for the general case and for the

cases where the longitudinal or circular ribs, or both, are restricted

to bending or twisting° Eight possibilities other than the general case
are considered° A table is presented that relates the number of half

waves to the cylinder parameters for the general and the _ight restricted

cases. Extension is made into the plastic region by introducing as the
stress the yield stress°

A chart is presented for the critical load as a function of pressure

for 27 half waves in the tangential direction and for 50,100 and 150 half

waves in the longitudinal direction for a shell with a radius of &o5

meters, a length of 26 meters, a thickness of 0.5 cmo, and 5_ ribs. Cal-

culations indicate that the critical axial load is similar to that pre-

dicted by orthotropic shell theory° A table is presented that compares
the results of this analysis with orthotropic shell results.

The author is at Academy of Sciences, Ukraine SSR, Institute of Mechanics.
5 References.

3- Anderson, M. So: Combinations of Temperature and Axial Compression

Required for Buckling of a Ring-Stiffened Cylinder_ NASA TN D-122A,
April 1962o

A theoretical analysis is presented for the buckling of cylinders

subjected to both axial compressive and thermal stresses for simply sup-

ported and clamped end conditions° The basic analysis considers the

cylinder walls at a uniform temperature and rings at some lower tempera-

ture. Axial compression and temperature combinations necessary to cause

buckling are determined by expressing beth the variatioo of circumferen-
tial stresses produced by a uniform axial stress and circumferential

stresses resulting from the temperature distribution _n a Fourier series

expansion° Batdorf_s modified equilibr_&m equation is used in the cir-

cumferential stress analysis for the case cf uniform a_d_al compression.

The series expansion for deflection is substituted into th_ equilibrium

expression yielding an infinite stability deterninant that is convergent

for both clamped and simply supported edge conditions--unlZke Donnell_s

eighth order equation which is possibly divergent in the case of clamped

cylinders. In addition to usual small deflection theory assumptions,

rings are assumed to be rigid against radial loads but are allowed to

expand due to temperature gradients_
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Theoretical results are presented in tabular and graphical form

and compare favorably with empirical results of another investigation.

Results are presented as a buckling temperature coefficient plotted
against the cylinder curvature parameter for various values of the ratio

of applied axial stress to the classical buckling stress. These inter-

action charts cover a wide range of cylinder proportions and curvature

parameters. Curvature parameters from one to 1,0OO are conzidored an_l
temperature variations from O°F to 600°F are consic_crcd 2or al_ln_;_
202A T-3 alloy cylinders.

It is concluded that, for moderate to large values of curvature

parameters, the buckling temperature of a cylinder is essentially inde-

pendent of length and that the buckling temperature in the case where

only thermal stresses are considered is beyond the range of use of most

mmterials. It is also determAned that a cylinder can endure large changes

in axial load without a significant reduction in buckling temperature.

The author is at Langley Research Center.
6 References.

_. Anderson, M. S.: Buckling of Ring-Stiffened Cylinders Un,_,_r'a Pure

Bending Moment and a Nonuniform Temperature Distribution. _I/_:,Aj,TTD-I_I3,
November 1962.

An experimental investigation is undertaken to determine the effect
of axial and circumferential thermal stresses and load-induced stresses

on the buckling of cylinders. Experimental results are compared with

theoretical results obtained from an analysis presented in the appendix
and a former analysis (NASA TN D-122A) for determination of load-induced

stresses of buckling.

The analysis presented in the appendix is an extension of the method

presented in NASA TN D-1224 by M. S. Anderson. The significant differ-

ence is that axial variations in the temperature distribution are ac-

counted for by ass_ains a con_ba_ Uemperature in each of several bays.

Bay length is not necessarily the length between circumferential ring

stiffeners but is dependent on the desired accuracy in representation of

the axial temperature distribution.

Thirteen cylinders with type 301 stainless steel walls and type 30_

stainless steel spun Z-section rings were tested in pure bending. All
cylinders were 19 inches in diameter and A5 3/A inches long with a nominal

wall thickness of 0.030 inches and a resultant value of radius to thick-

ness ratio of approximately 300. Rings were 1¼ in Z-sections with 3/A

inch flan_e_, i_o rin_ spacings were u_ed with spacing to radius ratios

of 1 and of _. Cylinders _rere fabri_ :_ oi_ sheet material with 3 longi-

tudinal spot welded splices. Speci_t_:_{cSails are presented in drawings.

Loading was accomplished by mounting the specimen to a heavy back-

stop and applying a pure bending moment by means of a pin-connected

loading frame. Precautions were taken to eleminate shearing forces on
specimens. Two cylinders with a ring spacing to radius ratio of ½ and one

cylinder wi_h a ring spacing to radius ratio of 1 were tested in pure

bending at room temperature to obtain data for comparison. The signifi-

cant difference between the tests at room temperature and the tests with

heating is that in the case of the room temperature tests, the load was

applied by means of hydraulic jacks rather than by a pin-connected
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loading frame. Tests with heating were accomplished by loading the
specimen in bending to some load less than the classical buckling load

and heating the structure at a rate of 25° F/second until buckling oc-

curred. The vertical deflection at the end of the cylinder was re-

corded continuously to determine the instant of buckling. End moments

were varied and a buckling interaction curve for load-induced stress

:and temperature was obtained.

Results of the investigation are given in tabular and graphical

form. Maximum load-induced stress is plotted against the temperature

of the extreme compressive fiber between stiffener rJu_ for both uni-

form and nonuniform heating. Temperature distributions are also plotted.

Results indicate that elementary thermal stress theory is inadequate

for prediction of buckling loads of cylinders under nonuniform heating.

An analysis is presented tha& _ho_vsreasonable correlation with experi-
ment.

i_ author is at Langley Research Center.

, _o_erences.

5. Ando, N.: On the Strength of the Orthogonally Stiffened Plate--ist

Report--Theoretical Solution of Orthotropic Plate Subjected to Bending,

Ministry of Transportation, Tokyo, Japan, March 1962.

Orthotropic plate theory is applied to the analysis of ortho_onJ_)_ly

stiffened rectangular plates. Three approximate methods are considered

--the grid structure method, the energy method, and orthotropic plate

theory. The basic differential equation is presented and the form of

solution is discussed with particular attention paid to boundary condi-
tions.

A theoretical solution to the fundamental differential equation is

obtained as the sum of the general and particular solutions. The form

of the particular solution is discussed for various types of loading--

uniformly distributed load, hydrostatic pressure, concentrated line

load, and symmetrically positioned concentrated loads. For simply sup-

ported edge conditions, solutions are derived for a distributed load in

a rectangular d_i_, aline load, a concentrated load, a moment distrib-

uted along an axi_ of the plate, and a distributed loading over a general

area on the plate. For the case of two edges simply supported and two

built in, solutions are obtained for a distributed load in a rectangular

domain, a line load, and a concentrated load. For the case of two edges

simply supported and a moment distributed along the other, both _L_
metric and antisymmetric moment distribution solutions are obtai_c:_. A

solution is also obtained for the case of three edges simply supported
and the other free.

A solution is obtained for the case of two edges fixed and a moment

di:_tributed along the other edges. Exact and approximate solutions ob-

tained for the case where all edges are fixed. Deflections at the cen-

ter of the plate are calculated by the exact and approximate methods and

are presented in tabular form for plates of various aspect ratios.
A solution is presented for an orthotropic plate partly stiffened

by a large stiffener. Further extension of theory is presented for the
case of continuous plates. Deflection distribution along the longitudi-

nal of a continuous plate is shown graphically for various load ratios.

Theory is also extended to a rectangular box composed of orthotropic

plates.

I
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The author is at Ministry of Transporation, Tokyo, Japan.
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6. Armenakas, A. E., and Herrmann, G.: On the Buckling of Circular

C_lindrical Shells Under External Pressure. Columbia University, Project
rT,7, Contract AF A9 (638)-_30, Technical Note 7, August 1962.

A bending theory previouslypresented by the authors is employed

to determine the values of hydrostatic and constant-directional pres-

sure to cause buckling of circular cylindrical shells. Inadequacy of

equations previously developed by other authors is primarily attrib-

uted to the negation of the change in direction and magnitude of applied
pressures resulting from deformations.

Changes in pressure, forces, and moments are expressed in terms of

a non-orthogonal set of unit vectors and unit elongations. The non-

orthogonal set of unit vectors arise from the orthogonal set of unit

vectors describing a surface element undergoing deformations. Solutions

of deformations are then assumed and introduced into the equilibrium

equation resulting in three homogeneous algebraic equations whose condi-

tional solution yields the buckling pressure. Underlying boundary con-

ditions for the assumed deformation solutions are discussed. Equations

for the buckling coefficient are then presented for both the hydrostatic

and constant-directional pressure cases. A discussion follows relating

to the terms in the buckling coefficient equations. It is shown that a

shell cannot buckle under external constant-directional pressure but may

buckle under external hydrostatic pressure.

Approximate formulas are presented resulting from consideration of
the number of axial half waves. It is shown that unless the shell dimen-

sions are conducieve to buckling, the effect of the nature of the applied

pressure is negligible. Charts are presented that allow the determina-

tion of the mode for the cylinder parameters: length to radius ratio and

thickness to radius ratio. The charts are needed for use in the equa-

tions for the buckling coefficient.

Theoretical results of other investigators are compared graphically

and it is shown that the equations of yon Mises, Loo, and Batdorf are

applicable for various ranges of shell parameters.

The authors are at Columbia University.
]4 References.

22. Becker, H._ Handbook of Structural Stability, Part VI-Strength of

Stiffened Curved Plates and Shells. NACA TN 3786, July 1958.

A comprehensive review of the theories of instability failures of

plates and shells is presented. General instability of circular cylin-

ders is discussed where loadings considered are bending, external pres-

sure, torsion, transverse shear, and combinations of these loading condi-

tionso The primary objective of the report is the examination of the

methods of predicting bending and torsional general instability failure
in stiffened circular cylinders.
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The theory of Taylor is used as the basis for analysis. Lack of

agreement of previous papers on general instability is attributed to

the evaluation of pertinent section properties and rigidities. The ap-

proach of Hoff in which the energy increment is minimized is also dis-

cussed. Experimental results from tests conducted at Guggenheim Aero-

nautical Laboratory, California Institute of Technology (GALCIT) and the

Polytechnic Institute of Brooklyn, Aeronautical Laboratory (PIBAL) form

the basis of an empirical approach presented. Test data from GALCIT and

PIBAL are presented in graphical form. Effects of plasticity on failure

stress are considered and a reduced modulus (secant modulus) is proposed.

_._inimumweight design is discussed using the mathematical formula-

tion of Gerard. Fundamental concepts of minimum weight analysis in

general are reviewed and the application to stiffened cylinders in bend-

ing is presented where the minimum weight conditions of a stiffened
cylinder in bending are stated.

Theoretical and analytical results of PIBAL for stiffened circular

cylinders with cutouts is presented. Theoretical analysis follows the

energy approach where the cutout is included in the analysis by repre-
senting the buckled form as a sine wave extending the length of the cut-

out and by a Fourier series (7 terms) extending in the circumferential

direction. PIBAL theory predicts the critical moment accurately for

symmetric cutouts but the instability stresses predicted range to 35 per

cent greater than tests indicate. An attempt to predict instability in
the case of side-cutouts failed.

A section of this report is devoted to pressure instability. Avail-

able theoretical data are collected since no tests are currently avail-

able. Noderate-length and long circular cylinder theoretical develop-
ments are presented .....

Problems of effective widths and approp_'iate section parameters to

be used in the equations are discussed. Data for all cases are presented
graphically.

Hayashi,s method for torsional instability covering the entire length
range is discussed. Hayachi used an implicit form of instability and in

this report explicit data are presented in tabular form. A discussion

of pertinent section properties along with effective widths for torsion

is presented. GALCIT test data, applicable to moderate length ranges,

are used as a basis for comparison.

No formal analysis is presented for the case of transverse shear

instability due to the lack of a published theory. GALCIT data for canti-

levered torsionally loaded cylinders are applied to obtain a conservative
(15 per cent) empirical expression.

Combined bending and torsion are treated by interaction equations.

Interaction curves that are parabolic and circular are found to include

the test data and serve as upper and lower bounds. Test data and analy-

tical data are presented graphically.

The author is at New York University.
56 References.
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8. Becker, H. and Gerard, G.: Elastic Stability of Orthotropic Shells.

Journal of Aerospace Sciences, Vol. 29, No. 5, May 1962, pp. 505-513,
520.

Objectives are twofold: (i) to correlate available experimental
data on elastic stability of orthctropic shells that fail due to ex-

ternal pressure, torsion, or axially compressive loading; and, (2) to

use the Batdorf modification of the Donnell eight order equilibrium

equation to obtain solutions for zero length to long range orthotropic
cylinders covering a wide range of curvature parameters.

Possible buckling modes, characteristics of attachment of the

cylinder-stiffener combination, and the theoretical treatment of the

skin stiffening system are discussed. Taylor,s governing differential
equation is presented based on elastic behavior, linear small-deflec-

tion theory, and a Poisson,s ratio of zero. The underlying assumptions
of the Taylor differential equation are discussed. Also included in

the preliminary discussion is the effect of pressurization on the

strength of cylinders with initial imperfections. Distinction is made

between the actual and the geometric stiffnesses of cylinders. In the
case of axially compressive loading, this distinction becomes of vital
importance.

The approach used assumes a reasonable solution to the Donnell

equation (primarily dictated by boundary conditions) and obtains the

buckling coefficients as a function of buckle mode parameters and curva-

ture parameters for each loading case by differentiation as dictated by
the Donnell equation. The expression is then minimized for the case of

a flat plate (curvature parameter of zero) for appropriate length

ranges. Due to mathematical complexities the buckling coefficient is

necessarily minimized numerically in the short cylinder range. The re-

sults are plotted against a unified set of non-dimensional isotropic
shell parameters for cylinders of varying length.

Results of the theoretical investigation are compared with experi-

mental findings from other investigations. Both orthotropic and iso-

tropic cylinder data compare favorably with theoretical data for pres-

sure instability. Torsional instability results are compared with iso-

tropic cylinder theoretical results by Batdorf. For the axially com-

pressive case, the experimental data are severly limited and only one
point is available for comparison. This information is obtained from

an experimental investigation using a 2OI&-T6 aluminum alloy cylinder
7 feet in diameter, _ feet in length, and with a 0.055 inch skin thick-

ness. The cylinder was integrally stiffened with rings that have a

depth of O.125 inches and a thickness of 0o195 inches. The rings were

spaced at 1.75 inch intervals. Agreement, in this case, is excellent

but further experimental investigation is deemed necessary.

The authors are at New York University.
18 References.

9- Becker, H., Gerard, G. and Winter, R.: Experiments on Axial

Compressive General Instability a_ono!ithic......._ ....._ ...._....+_"_j S_'_!**ened

Cylindrical Shells. New York University, Research Division, Technical
Report No. SM 62-5, May 1962.

An experimental program is conducted on machined orthotropic

aluminum alloy cylinders with ring stiffeners _Ander axially compressive

loading to investigate the general instability characteristics of
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stiffened cylinders. Linear orthotropic stability theory is used to

predict the buckling load and mode shape for moderate length cylinders.

Care is taken to assure that no mode other than the general in-

stability mode occurs during testing. Tests were conducted on two

isotropic and twelve ring stiffened circular cylinders loaded in axial

compression. The cylinders were nominally 8 inches and 2A inches in

diameter. An analysis performed on a 7 foot diameter cylinder is also

included. Variations in ring spacing, ring details, and shell thickness

were incorporated in the specimens. All cylinders were made of 202A-T3

aluminum alloy except two specimens that were made of 201A-T6 aluminum

alloy. Geometric, structural, and theoretical and experimental buck-

ling stress data are presented in tabular form for all cylinders. Six

of the cylinders were formed by threading rings on a lathe to obtain a

more umiform cylinder wall and rib geometry. _s of the cylinders

were faced to a maximum variation of 0.0005 inches throughout the end

planes. Ends of one model were encased in transparent epoxy rings for

photoelastic analysis. No significant variations in fringe patterns
are observed in the test. Details of the three end conditions used are

presented.
Data are presented in terms of both the average measured thickness

and the minimum measured thickness. Due to uncertainty as to which

value should be used in theoretical analysis, structural parameters

(dimensionless length and buckling coefficient) are calculated for

both average and minimum thicknesses. Structural mode parameters are

calculated for only the average thickness. In addition to the general

instability load, data was obtained for buckle geometry and post-buck-

ling behavior of each specimen. Photographs of the post-buckled state

of the cylinders are presented.

The cylinders investigated failed in general instability with no

other mode present. Data indicate that linear theory is adequate for

prediction of the load carrying capacity of monolithic ring stiffened

circular cylinders.

A lower limit of application of linear orthotropic theory is ten-

tatively set in terms of the two structural parameters obtained from

asymmetric theory. The transition from isotropic to orthotropic be-

havior in the region not considered in this program still requires in-

vestigation. Excellent agreement with theory is obtained from both 2&
inch and 8 inch diameter cylinders indicating that no significant size

effect is associated with the circumferentially stiffened cylinders

tested.

The authors are at New York University.

7 References.

lO. Berkowitz, H. M.: Elastic Deformations of Conical Shells, Equation

of Equilibrium for Large Elastic Deformations of Relatively Thin
Turncated Conical Shells. Fairchild Stratos, Aircraft _;_ssles Division,

FS-AMD, R 62-1, September 1962.

I

I
I

Determination of approximate equations governing the large-deforma-

tion behavior of relatively thin, truncated, elastic conical shells sub-

jected to arbitrary loading on all surfaces is considered.
Discussion is restricted to elastic materials whose stress is de-

rivable from an elastic potential. The form of the elastic potential

used is the same as that of linear small deflection theory. Using

the elastic potential_stress is expressed in terms of strain. The
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relation is shown to reduce to the isotropic stress relation for an

elastic medium° For the purpose of illustration only isotropic ma-
terials are considered further.

The author i _:. _irchild-Stratos.
12 Refcrcncus.
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Ii. Card, M. F. and Peterson, J. p.: On the Instability of Ortho-

tropic Cylinders. NASA TN D-1510, December 1962, pp. 297-308.

Preliminary results of an experimental investigation of the

buckling strength of laterally and longitudinally stiffened cylinders

and fi!_ment-wol_nd S!as_cpoxy cylinders are compared with instability

calculations based o_i _u_!_ deflection orthotropic cylinder theory.
Calculations are perfo_ned to study the effect of certain stiff-

ness parameters on calculated buckling loads for the laterally and
longitudinally stiffened cylinders. From these calculations it is

determined that, throughout the range of uncertainty of the stiffness
parameters, the extensional modulus in the circumferential direction

and the twisting stiffness are not the cause of discrepancy in calcu-

lated buckling strengths. It is thus determine_, by elimination, that
the source of the discrepancy is the esti_:_iJ_ values of wall stiffness

in bending and in wall shearing stiffness. Auo_i_or calculation is

performed to determine the likelihood of panel buckling as a source of

the discrepancy. It is found that the cylinder with the largest

lateral stiffener spacing may have failed in panel buck]in_ but that
this was unlikely in the case of the other cylinders.

Laterally and longitudinally stiffened cylinders _ere te_;ted in
bending. Cylinders were 77 inches in diameter and were stiffened wJ_h

Z-section stringers and hat-section rings. Glas_ _i_o_y c_inder_ 1_r_

15 inches in diameter and tested in axial compressio_l. Epoxy cylind_r_J

were constructed with both circumferential and helical windings to a-
chieve orthotropic properties.

Stiffnesses of the filament-wound glass-epoxycylinders are deter-

mined from the equations of elasticity for orthotropic materials. The

epoxy wall experienced plastic deformation that subsequently lowered

the buckling load for helical winds of 45 ° to 67½ ° but for a helical
wind of 25° the cylinders appeared undamaged by plastic deformation.

The 25° helically wound cylinders did experience lower buckling loads

on reloading. Excellent agreement between theory and experiment is

attributed to the low radius to thickness ratio (in the order of 125)
of the 25° helically wound cylinders. Previous studies indicate buck-

ling loads of cylinders with low radius to thickness ratios deviate

little from theory.

It is concluded that, in the case of laterally and longitudinally
stiffened cylinders, wall stir Chess in shear and the circumferential

bending stiffness need bc_tcr .h_finition. With respect to the _lass
epoxy cylinders, the mode o _i]ure needs better definition to'deter-

mine significant stiffness and plastic reduction parameters. Further-

more, even small rings affect the instability mode and further testing

is necessary to establish a quantitative effect on panel instability.

The authors are at Langley Research Center.
9 References.
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12. Connor, J. J., Jr.: Elastic Buckling of Axially Compressed, Thin,

Unreinforced Cylindrical Shells. Watertown Arsenal Laboratories, WAL
TR 836.3212, January1960.

A survey of literature pertaining to the behavior of axially com-

pressed, thin, unreinforced cylindrical shells is presented.
For unpressurized shells, small deflection or classical theories

by Donnell whose work is extended to edge warpage in the axial direc-

tion and Batdorf whose work using the Galen_kin approach to Donnell's

modified equation includes clamped and edges free to warp in the circum-

ferential direction are presented and discussed with emphasis on the

validity and applicability of underlying assumptions.

Also, for unpressurized shells, semi-empirical approaches are dis-

cussed. The work of Batdorf is briefly discussed. A semi-empirical
method presented by Harris et. al. similar to the work of Batdorf is

discussed at length. All length ranges including short, intermediate,

and long are discussed for cylinders with clamped edges. Cylinders
with simply supported edges are also included in the discussion. De-

sign charts are presented in which semi-empirical and small deflection

theories are compared.

Post buckling behav_io ol u pressurized shells is also discussed.
Original work by Donnell is discussed. An extensive discussion of the

t ! . . •

work by yon Karman and Tslen Is presented and the derlvation of equilib-
rium and compatability equations is presented in the appendix. Effects

of imperfections are discussed along with a brief discussion of classi-

cal finite deflection stability criterion.

For pressurized shells, a finite deflection stability criterion

formulated by Lo, Crate, and Schwartz is discussed along with their ex-

perimental observations. A discussion of the effect of internal pres-

sure on the buckle mode is included along with a brief discussion of

plastic buckling of shells. Results of experimental investigations by

Harris et. al. and Fung and Sechler are presented graphically. Semi-

empirical analyses are discussed and theoretical and recommended design

data are presented graphically.

The author is at Watertown Arsenal.

22 References.

13. Findley, W. N.: Theories Relating to Fatigue of Materials Under

Combinations of Stress. Engineering Materials Research Laboratory,

Division of Engineering, Brown University, U. S. Army Ordinance Corps,

Contract DA-19-O20-ORD-3520, Project './ill (!3A8), Technical Report
No. 2, June 1956.

The mechanism of fatigue of materials is discussed. Some of the

primary factors that induce resistance to fatigue fracture are discussed

in elastic and plastic loading regions. The origination of fatigue

cracks is explained for every combination of stresses by a single fa-

tigue mechanism theory using as the basic h_othesis the transition from

shearing slip to tensile separation including the effects of anisotropy
of the material.

Effects of static stresses are discussed extensively considering

the effects of tension and torsion. A series of three tests on 75-S-T

aluminum is mentioned consisting of a test at zero mean stress, a test
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that initially induces yielding and a load reversal to the minimum

cyclic stress, and a test at a high mean stress using the same approach
as is used in the second test.

3ix of eight theories for combined bending and torsion are reduced

to a single expression which is equivalent to the Gough empirical el-
lipse quadrant. The principle stress and strain theories are reduced

to parabolic and elliptic areas respectively.

Fatigue tests are rcportod that cxplored the influence of aniso-

tropy. Tests were made on three alloys (76S-T61, 25S-T6, and SAE A3AO

steel). The tests support the conclusions of the effect of anisoSrop_.

Variations in the bending to torsion stress ratio are explained with hhe
use of anisotropy, complementary normal stress, and the orientation of

the shearing stress with respect to the material texture.

The author is at Brown University.
8 References.

1A. Fitzgibbon, D. P.: Experimental Method for Testing Materials in

Biaxial Stress Fields. Space Technology Laboratories, Los Angeles,
STL / TR-60-0000-09028, February 1960.

An experimental procedure for investigating the biaxial stress

states that arise in pressurized vessels is presented. The main objec-
tive of the report is to set dovm an experimental oroc_h_Fe with suffi-

cient flexibility to be extended to investigations-of any tension-ten-

sion biaxial stress field. This report is a preliminary investigation
and contains only a discussion of the experimental procedure with no
results presented.

A limited description of biaxial stress fields is presented. The

experimental procedure is basically to maintain a constant ratio of

longtudinal to circumferential stress while increasing these stresses

to failure. This is to be carried out for several stress ratios until

sufficient data is obtained. Direct axial loading is accomplished with

a testing machine while pressure loads are applied with the use of a

hydraulic jack. X - Y plotters are used to record longitudinal and

circumferential strains as a function of pressure. A detailed list of

equipment is provided in the appendices along with a block diagram of
the instrumentation.

Data are electronically reduced and corrections are discussed. It

is shown that although the data obtained must be reduced, initial test

records serve as useful comparative results since data corrections are

usually comparatively small.

The author i:_ _:_acc Technology Laboratories
5 References.

15. Compressive Stability of Or5hot_opic Cylinders. _ew York University,

College of Engineering, Rc:_:_rch Division, Technical Xeport SM 62-A,
May 1962.

Elastic and plastic buckling of short isotropic and orthotropic

cylinders loaded in axial compression is considered. The governing dif-

ferential equation is obtained from equilibrium and strain-displacement

conditions. Solutions for the buckling coefficients are obtained
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for both axisymmetric and asymmetric modes. The buckling coefficients
are minimized for the moderate length ranges.

The behavior of the solutions over the length ranges corrco_._ond-

ing to flat plates, short cylinders, and moderate length C_TIi_dClC is

examined for the _lastic case. In the moderate lenyth fan'-c, solutions
are presented grap_ically in parametric form. Addition<<[ ch_;ts<of<i

buckling coefficient ratio vs. wave length parameter are _orcsented,

Upper limits for the short cylinder region are determined" for both the

axisy_netric and asymmetric modes in terms of a curvature parameter and

the buckling coefficients. The results for the short cylinder region

are presented in graphical form.

For the plastic case, solutions are obtained for the axisymmetric
and asymmetric modes. SoluDions for wave length parameters and buckling

c_-_ _,.n+._ are p_,_,._#-.,,_ _,_4 _o_ 1_ and are compared with ava4 ]able

isotropic test data for moderate length aluminum alloy cylinders (3003-0,

2017-T_, and 7075-T6) to establish limits on the ranges of the explicit

solutions presented. A plasticity reduction factor is introduced and

plotted against curvature. For orthotropic plastic cylinders, buckling

coefficient vs. curvature charts are presented. Effects of plasticity

on moderate length orthotropic cylinders are demonstrated. A quantita-
tive illustration is used to calculate the buckling coefficient vs.
curvature charts.

Post-buckling behavior of orthotropic cylinders is qualitatively
discussed. A schematic representation of the behavior of moderate lc:r-V_

cylinders is presented graphically and the special case of the isotroQi[c

cylinder is discussed for both elastic and plastic cylinders. The plas-

tic analysis is based, in parts, on the analysis of Lee. Effects of
initial imperfections are qualitatively discussed.

The author is at New York University.
7 References.

I 16. Gerard, G.: Elastic and Plastic Stability of Orthotropic Cylinders.
NASA TN D-1510, December 1962, pp. 277-295.
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Elastic and plastic buckling behavior is predicted for orthotropic

cylinders of moderate and short length by linearized stability theory.

Plastic buckling behavior is investigated for isotropic cylinders in the

same length ranges. All of the theoretical results are presented graph-

ically and correlated with experimental data. Comments are _enerally
confined to cylinders loaded in axial compression although m_ntion is

made of the general agreement in buckling behavior of Other loading
mechanisms with linearized theory.

In the case of moderate length orthotropic cylinders, results in-

dicate that the failure mode is influenced by the buckling coefficient

ratio and the wave length parameter. For buckling coefficient ratios

greater than one, results indicate that failure is governed by the axisym-

metric mode. For buckling coefficient ratios less than one, or for

imaginary wave length parameters, the asymmetric mode is found to govern.

For short cylinders the buckling mode is determined by the curvature para-

meter. Axisymmetric modes are found to govern only for curvature para-
meters less than 1.4.

Axisymmetric modes of failure are found to govern for moderate length
isotropic cylinders in the plastic region. Plasticity reduction factor

equations are presented for axisymmetric and asymmetric modes for short
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isotropic cylinders in the plastic region. The axisymmetric solution

for isotropic cylinders is shown to be applicable to orthotropic

cylinders in the plastic region. For the asymmetric modes, it is found
that the proper orthotropic plasticity coefficient must be used.

Correlation with available experimental data is made for ortho-

tropic elastic cylinders. The author concludes that orthotropic con-

struction is more reliable than isotropic since prediction of buckling

loads is more accurate. For failures of plastic cylinders in the axisym-
metric mode, correlation is excellent. However, asymmetric failures ex-
hibited discrepancies with theory.

Post buckling behavior is briefly discussed along with the effect
of imperfections in the cylinder. Discussion reveals that a decided

effect on the buckling characteristics in elastic cylinders but a negli-
gible effect _ plastic _I_._.

Author concludes that structural reliability of orthotropic laterally

stiffened cylinders exceeds that of longitudinally stiffened isotropic
cylinders.

The experimental program was conducted with only laterally stiffened
orthotropic 201/_-T6 aluminum alloy cylinders. Results from another NASA

sponsored investigation are used for 7075-T6 and 3003-0 aluminum alloys
(NASA Research Grant NSG-17-59 with New York University).

The author is at A1]icd _c:_rch Associates.
9 References.

17. Gibson, J. E.: Computer Analysis of Thin Shells. Symposium on the

Use of Computers in Civil Engineering. Laboratorio Nacional de Engenharia
Civil, Paper No. 2A, October 1962.

Programs are described for determining moment and stress resultants

for general multi-shell structures without edge beams that are capable
of solving shells with up to thirty_ay_.

Two basic-procedures are follo_Jed. The first method is derived from

equilibrium and compatability relations where the governing equation is

presented along with the general and particular solutions involving
eight arbitrary constants to be evaluated from the boundary conditions.
The second method is derived from displacement considerations. Three

partial differential equations arise and an assumed solution yields a

characteristic equation where the vanishing determinant of the coeffi-
cients furnishes the needed information for calculation of stress and
moment resultants.

Boundary conditions are found to require that the stress and moment

resultants must vanish at the free edge; that the displacement be con-
tinuous at shell intersections; and that the moment and stress resul-

tants be equal at shell intersections.

Example applications to asymmetrical shells are cited. The first per-

tains to a shell with a total arc an_lc of _0°, a radius of 30 feet, a
length of 120 feet, a thickness of 0,25 fcet, and a total loading angle of
_0 O"

Data is presented in tabular form. The second pertains to wind
loading on a double cylindrical shell of the same specifications as the

first problem with a wind loading of 15 psf. Results are presented in

graphical form. The third problem pertains to the wind loading of a flat

roof in which small arc angles (2°) are used to approximate a flat surface.

The radius used is 200 feet in this case. The angle of inclination

I
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of the shells is 30° • The results of the analysis of a shell of double

curvature are presented in tabular form. The shell has the same overall

geometry as that of problems one and two.

The author is at University of l:anchester.
6 References.

18. Hodge, P. G., Jr.: Plastic Analysis of Circular Conical Shells.

Department of Mechanics, Illinois Institute of Technology, DOMIIT Report

No. 1-8, August 1959.

Basic equations necessary to -_r_::[c_6he collapse load of a right
conical shell when the load is applied over a finite area at the vertex

are reviewed. Shell dimensions and stress resultant and displacement

sign conventions are shown. Equations of cquilibrium along a generator

and moment equilibrium equations _?.rowritten in dimensionless form.

Generalized strain rates and generalized stresses are then written in

terms of displacements. Boundary conditions are stated and external

and internal energy dissipation rates are presented. The fact that the

external and internal energy dissipation rates must be equal is stated

to provide an upper bound on the load.

When the load is applied over a finite area, gw0 problems are con-

sidered--one involving direct stress and the other involving bending

moments. A solution is presented for the direct stress. A moment dis-

tribution is also proposed but found not to be statically admissable.

A new hypothesis is formed and another moment distribution results that

is statically admissab!e. Applying the plastic flow law to the assumed

stress profile and using the boundary conditions, a kinematically ad-

missable velocity field is derived. Internal and external energy rates

are then equated to yield the collapse load. The equation presented

for the collapse load is shown to provide upper and lower bounds for the

collapse load for all shells.

For the case of a concentrated load the static problem is approached

directly by letting the area of load application approach zero in the

previously derived equations. The velocity field is approached indi-

rectly since if the area is reduced to zero an inadmissible velocity

field is created. The equations are shown to apply to shells with other

edge supports.

A more direct approach to the problem of a general rotationally

symmetric shell is presented and is illustrated for the case of a shell

cap. Solutions of shells of medium flatness are presented in the appen-
dix.

The author is at Illinois Institute of Technology
6 References.

19. Hodge, P. and Panarelli, J.: Plastic Analysis of Cylindrical Shells

Under Pressure, Axial Load and Torque. Illinois Institute of Technology,

Department of Mechanics, DOkZIT Report No. 1-17, April A_o2.

An explicit parametric form of the yield curve is obtained for thin

shells that yield according to the yon Nises yeild criterion. For

!
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arbitrary shells, the yield condition is expressed in terms of six gen-

eralized stresses. In the case of the cylindrical shell, the variables
are reduced to four. Generalized stresses are further reduced to two

by restricting the loading mechanism to the case of a cylindrical shell
with axial and twisting loads applied only at the ends.

The case of the cylindrical shell loa_le,_ only at the ends is treated

with the use of dimensionless stress parameters. The resulting yield
curve is shown to be bounded from the interior by its inscribed circle

and from the exterior by a circle of 5 per cent greater radius than the

inscribed circle. It is concluded that a solutior according to a circle

provides close bounds on the interaction curve_ Simplified solutions

for singular portions of the yield surface are discussed briefly. Dis-

cussion is limited since only thebounds of solution are of primary con-

stress parameters in that it is related to the yield stress of the mate-

rial in simple tension rather than the stress to cause yield in the struc-

ture. Upper and lower bounds in terms of a load parameter are furnished
to describe the yield condition.

Examples are cited for the special case of an applied torque and

pressure with no end load and an ordinary pressure vessel where the pres-
sure acting on the ends of the vessel causes an axial load. Interaction

curves are plotted for these special cases° The dimensionless para-

meters are again related to the yield stress in simple tension of the

material and not to the load that causes yield in the structure.

The Appendix provides an approximate solution for the yield curve.

The authors are at Illinois Institute of Technolo_y.
3 References.

20. ttom, K.: Elastic Stresses in Ring Frames of Imperfectly Circular

Cylindrical Shells Under External Pressure Loading. Structural Mechanics

Laboratory, Research and Development Report _Jo. 1505, May 1962.

A solution for the elastic stresses in the ring frames of imper-

fectly circular cylindrical shell of finite length subjected to external

pressure presented by Kendrick is reviewed. The Kendrick analysis is

developed with the principle of minimumpotential energy (Rayleigh-Ritz

method) assuming an initial imperfection of thc _(_ fo_n as buckling

displacements. The assumption of the initial i_erfection parameter
presented by Kendrick is shown to beimprobab!e and a more realistic
form is presented.

Kendrick,s general approach is closely followed with modification

only in 5he _aperfection parameter used. The potential energy is
written as a function of the energy stored in the frame and shells and

the total work done by the external load. Strain relationships are

introduced (derived in the Appendix) as a function of the buckling and
axisymmetric load displacements. The principle of minimum potential

energy is appli_(_ _o obtain a set of linear non-homogeneous eouations

in mode shape pava_c_crs as a function of the initial imperfection am-

plitude. Ibde shape parameters introduced are functions of buckling
displacements. Finally, the elastic strain equation as a function of

the buckling displacements is introduced (derived in Appendix). An ap-

proximate solution is obtained by using the relations from the complete

I
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solution for the special case of an infinite cylinder subjected to uni-

form external pressure neglecting small-order terms. The approximate

and complete solution compare favorably.

Tests are currently being conducted to confirm the theory pre-

sented. Preliminary results are obtained using cylinders constructed

of high-strength steel with a yield strength in the range of AS,000 to

50,000 psi. Stiffeners were made of T-frames with an overall length

about 1.6 times the cylinder diameter between rigid ends. One small

cylinder was constructed as a comparison cylinder with no initial im-

perfection. Two other specimens were of welded frame construction with

an initial imperfection. The two test structures had different magni-

tudes of imperfection.

Results thus far gathered experimentally are compared with analyti-

cal findings. It is found that the approximate and complete solutions

presented compared more favorably with experimental results than the

Kendrick analysis. All results are presented graphically.

The author is at David Taylor Model Basin.
16 References.

21. Keller, H. B. and Reiss, E. L.: Some Recent Results on the Buckling

Mechanism of Spherical Caps. NASA TN D-1510, December 1962, pp. 503-51_.

The buckling mechanism of clamped spherical caps is qualitatively

discussed. Initial load parameter, versus maximum defon_tion curves,
• t T .

flrst_proposed by yon Karman and Tslen, are discussed. ';_Lccurve
yon K_rm_n and Tsien presented indicates that the spherical cap can

exist in a maximum of three equilibrium states. The possibility of more

than three equilibrium states existing simultaneously is discussed. The
buckling mechanism is described by ordering the equilibrium states exist-

ing simultaneously in terms of the potential energy in each state. The

triggering mechanism that causes the d_mamic transition from one equilib-

rium state to another is discussed. Only axisymmetric deformation states

are considered but the transition problem is not limited to the axisym-
metric case.

Bifurcation buckling theory is used to bracket and yield close

bounds for the intermediate buckled state where the energy in this state

is equal to the energy in the lowest buckled state (lowest load parameter).

A qualitative load-deformation curve for bifurcation buckling is presented.

For relaxation buckling the method of Murray and Wright is used.

Only preliminary results are sunmmrized relating to the number of equilib-

rium states and the energy loads. Equilibrium states are discussed for

a large range of geometric parameters. Unbuckled, buckled, and ,,trigger-

ing,, states are discussed in the geometric parameter ranges considered.

The largest number of multiple solution thus far determined is nine.

Dependency of the problem on boundary conditions is discussed. Edges
are considered clamped in this report. A procedure is proposed to elimi-

nate the effects of initial imperfections in experimental tests.

The authors arc ._I !..,::., ii.i:_:,'i. ,.:.,.v_o.,_o#.
lO References.
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22. Kuenzi, E. W.: Buckling of Layered Orthotropic and Sandwich Cylin-

drical Shells in Axial Compression. NASA TN D-1510, December 1962,
pp. 323-330.

t

Results of the modification of the yon Karman and Tsien large
deflection theory for the calculation of critical loads as applied to

orthotropic cylinders loaded in axial compression are presented. Re-

sults are also presented for the modification of a theory for determing
the critical loads of sandwich cylindrical shells loaded in axial com-

pression which was previously presented by the author.

Extensive experimental data previously determined for plywood

cylinders constructed of yellow birch and yellow-poplar veneers are
compared graphically with analytical predictions of critical loads.

Only limited comparisons of sandwich core data are presented. The

sandwich sheets were made with aluminum facings and cores of end-grain
balsa wood and cores of soft cork board. Precautions were taken to

assure that the critical load was below the compressive proportional
limit stress.

Correlation between analytical and experimental data is only fair
due to the large amount of scatter in the experimental data.

The author is at United States Forest Products Laboratory.
8 References.

23. Lu, S. Y. and Nash, W. A.: Elastic Instability of Pressurized

Cylindrical Shells Under Compression or Bending. University of Florida,
Technical Report No. iTor Research Grant NSC_!6-59,
January ].962.

A theoretical analysis of pressurized cylindrical shells in

bending or axial compression is presented using nonlinear finite de-

flection theory. The compatibility and equilibrium equations are ex-

pressed in terms of the Airy stress function for membrane stresses. An

approximate form of the deflection pattern is assumed and an expression
for the Airy stress function is proposed. An approximate solution of

the equilibrium and compatibility equations is obtained using Oalerkints
method.

Due to the form of the proposed stress function it is possible to

obtain solutions for the cases of bending and compression separately
using the same approach. Results are presented graphically as critical
stress vs. pressure and compared with the results of Lo and Thielemann

and the experimental data of Fung and Lofblad in the case of axial com-

pression. For eccentric compression, or pure bending, the results are

compared with the experimental results of Suet, Harris, Skene, and
Benjamin for axial compression. All results are presented in non-dimen-
sional form.

The effect of initial imperfections is discussed. It is assumed

that the ratio of the incremental change in critical stress to the criti-

cal stress at zero pressure ratio is practically constant with respect

to imperfections. This ratio is plotted against a non-dimensional pres-

sure allowing test data to be obtained at only one pressure and the

value of critical stress in the same imperfect shell to be calculated

at any other pressure. Test data support the validity of this concept.
The theory presented is in good agreement with test data for a wide
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range of pressures for both axial compression and pure bending. However,
the values of critical stress are conservative for values of dimension-
less pressures greater than O.i.

The authors are at University of Florida.
9 References

2&. Morgan, W. C. and Bizon, P.: Experimental Investigation of Strecs
Distributions Near Abrupt Change in Wall Thickness in Thin l_alled

Pressurized Cylinders. NASA TN D-1200, June 1962.

An experimental investigation is conducted to determine the valid-

ity of previously published procedures in predicting the stress distri-
butions arising from discontinuities of the middle surface of thin-walled

pressurized cylinders. A modified analysis as applied to both thin and

moderately thick-walled cylinders is presented in the Appendix. The

principle of superposition is applied by adding the stresses obtained

as a result of surface discontinuity directly to the membrane stress.

Experimental data was obtained for large cylinders with diameter to

thickness ratios of 117 and small cylinders with diameters to thief:hess

ratios of 28. Large cylinders were made of a single shce5 of (>(_83-()

aluminum alloy rolled to shape and welded on a single longitudinal seam.
Flanges were welded to the structures and the entire structure was heat

treated to the T6 condition. Chemical milling was used on the large

cylinders to produce thickness changes in the walls. Small cylinders

were machined of 201A - T6 aluminum extruded tubing. Abrupt changes in

wall thickness caused by machining offered closer agreement with analyti-

cal assumptions. Tests were made at internal pressures of I00, ii0, 120,

130, IAO, and 150 psi for the large cylinders and 200, 300, 400, 500, 600,
and 623 psi for the small cylinders.

All cylinders were constructed with a ratio of wall thickness to

change in wall thickness of 0.4. Data obtained from tests are compared
with analytical results graphically. The maximum variation between ex-

perimental and analytical results occur in large cylinders and is thought

to have resulted from the disparity of the actual structure with analyti-
cal assumptions. A maximum variation of IO per cent is found for the

large cylinders and 6 per cent for the small cylinders.

It is concluded that stresses arising from the discontinuity of the
middle surface of pressurized cylinders have a marked effect on the stress

field. This effect is ::ost apparent in the case of a continuous outer
surface and disco::bi:mous inner surface.

The authors are at Lewis Research Center.

A References.

25. Mushtari, K. M. and Schenkov, A. V.: Stability of Cylindrical and
Conical Shells of Circular Cross Section, with Simultaneous Action of

Axial Compression and External Normal Pressure. Translation of "Ob

ustoichivosti tsilindricheskikh i konicheskikh obolochek krugovogo

cecheniia pri so_nnestnom deistvii osevogo szhatiia vneshnego normalnogo

davleniia." Prihladnaia Mathematika i _:,khanil:a, Vol. 18, No. 6, _bvem-

ber-December 195&. NACA Technical :c!::_>_a_aI133, April 1958.
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A theoretical analysis is given for the determination of the upper
limit of the critical load for circular cylindrical and conical shells.

Loading consists of the simultaneous action of compression uniformly

distributed over a cross section and external normal pressure.

Differential equations of equilibrium are written in terms of a

stress function and a normal displacement. Boundary conditions are

written for the case of simply supported ends. By means of a change of

variable substitution the differential equations and boundary conditions

are rewritten in a form more adaptable for solution. A normal displace-

ment function is assumed reducing the equations to a fourth order equa-

tion in the stress funcb:Lon which is solved. Boundary conditions are

introduced making possible the approximate evaluation of the four arbi-

trary constants.

The characteristic equation is obtained (by the Bubnov-Galerkin

method). The complex characteristic equation is simplified by the

assumption of a thin shell. The square of the normal displacement fre-

quency is assumed much greater than unity resulting in an equation for

the critical load. The critical compressive load is then written for

the case of zero pressure and does not deviate from the exact analysis
of Shaterman by more than 5 per cent (conservative) for thin shells.

An expression for the critical isotropic external pressure is ob-

tained. For the special case of the cylindrical shell, the critical

pressure is obtained with the shell under the simultaneous action of a

specific compressive load. The resulting expression is shown to pro-

vide an upper limit to the critical pressure.

Russian Translation.

6 References.

26. Nachbar, W. and Hoff, N. J.: The Buckling of a Free Edge of an

Axially Compressed Circular Cylindrical Shell. Quarterly of Applied

Mathematics, Vol. XX, No. 3, October 1962, pp. 267-277.

The classical linear equations for axially compressed circular

cylinders are solved for free-edge boundary conditions. An explanation
of why the loaded circular edges of the shell buckles before the other

edges if they are not reinforced is presented.

The classical equations for disnlacements are used in dimension-

less form and are based on the assuzptions of Donnell. These equations
are presented as functions of the _;[:b_cn_ionlessstress function and

dimensionless displacements. Exprc_sions for the total edge resultant

forces acting on the surface cut out by plane normal to the longitudi-
nal axis of the cylinder are presented. Equilibrium conditions of a

deformed edge are obtained by the linear superposition of the resultant
force distribution at the edge before and after deformations take

place. Three scalar equilibrium conditions are thus obtained for the

free edge. In addition, a fourth equation arises from the moment at

the free edge.

Solutions are obtained for the four equilibrium edge conditions
_e_-_v_ _,_._, _,,e assumption of a semi-infinite cylinder. For the case

wherc }:'_:i_;son'sratio is 0.3, the critical stress ratio vs. the para-
meter _;hich is indicative of the number of complete buckled waves a-

round the cylinder is plotted. The lateral displacement is also

plotted as a function of the axial coordinate.
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27. Newman, M. and Reiss, E. L.: Axisymmetric Snap Buckling of Conical

Shells. NASA TN D-1510, December 1962, pp. _51-_62.

Discussion of recent results pertaining to cone buckling limited

to axisy_etric deformations is presented. The close relation of coni _

cal and spherical cap problems is discussed. Results are presented

graphically for buckling of simply supported and shallow truncated
cones.

Relaxation bucklin G b_?_w_ _:_i_cussed. Differential equations

previously obtained are p_ _dary value problems associated

with simply supported and shali:_.......t_cabed cones are discussed.

Friedrichs' energy buckling criterion as applied to cones is used to

indicate the existence of an intermediate load where the energy of de-

formation is the same as that for the lowest buckling load. Numerical

data are presented in charts of load vs. a geometrical dimensionless

number and load vs. axial shortening for specific dimensionless geomet-

rical parameters (two sets of geometrical parameter_ arc employed).

Also shown are curves of upper, lower, and intermediate buckling loads
vs. the geometric parameter employed.

Bifurcation buckling is also discussed. Upper and lower bounds

for the intermediate buckling load are presented.

The authors are at Republic Aviation Corporation and New York University,

respectively.
18 References.

28. North American Aviation, Inc.: Testing of Unstiffened Metal Foil

Cylinders With and Without Internal Pressure. North American Aviation,

Inc., Missile Development Division, Missile Test Laboratory, AL-2679,

September 1957.

An extensive series of tests performed on both pressurized and _n-
pressurized thin-gage metal monocoque cylinders loaded in axial com-

pression, bending, torsion, and combined loading is described. Dimen-

sions of the 171 test cylinders made of 18-8 ½H steel and 2S HI8 alum-

inumalloy sheet with one 3/8 inch wide axial seam bonded with Epon VI

adhesive cured at 200°F or seamwelded are presented in tabular form.

Cylinder diameters were maintained at 17½ inches.

The _test setup is described in detail. A schematic diagram of the

load rig is shown. For developing testing procedures, the first cylin-

ders were made':of two-ply laminated fiberglass. Material characteristics

for the fiber_i_ss are included. Construction techniques for fiberglass

cylinders were repeatedly changed but no suitable method was found.

Three other materials were investigated and, unlike the fiberglass, the

main problems encountered were not intrinsic in the material but were

in the fabrication procedure. The three other materials tested were

18-8 ½H steel, 25 HI8 aluminum alloy, and Mylar. Suitability of brazing,

bonding, and seam welding were investigated. Brazing is rejected and

bonding was adoped. Bonded seams separated in some cases of high tor-

sion loading. Consequently, seam welding is adopted. A complete
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description of the model tests undertaken to study model characteristics
is included.

A schematic diagram of the loading system for torsion and compres-

sion of the metal cylinders is included. Two loading conditions were

studied in the tests. In one case, axial stress due to internal pres-

sure was present whereas in the other case this stress was balanced by
an axial strut.

Test results are presented in tabular form and are plotted as

average values on a graph. The graphical data are presented in dimen-

sionless form. In addition to failure data, skin buckling stress and

torque deflection data are also presented graphically_ The data plotted
have no corrections for length-radlus ratio but show consistent results

for the materials and thicknesses tested. For all buckling load values,

the buckling load is defined as the load that caused plastic buck1_ing.

The author is not stated.

I Reference.

29. Peterson, J. P.: Bending Tests of Ring-Stiffened Circular Cylin- •

ders. NACA TN 3735, July 1956.

A series of bending tests on ring-stiffened circular cylinders

were made of 25 cylinders loaded to failure. Variations in the ratio of

ring spacing to radius and in the radius to thickness ratio were incorp-
orated in the test specimens. Variations in radius to thickness ratio

_ore confined to values between 120 and 750. Ring spacing to _adius

ratios were ¼, ½, i, 2, and _ for the tests. Cylinders with d_am_ters

of 19, 30, A8, and 77 inches were tested. Rings of the 19 andS30 inch

diameter cylinders were extruded Z-sections with the use of two lxlxl/8

inch angle sections and a 3 inch sheet of 1/8 inch thickness. Rings in

all cases were heavy in order to reduce the possibility of general in-

stability failures. Specimen details are presented in tabular form.

All specimens were constructed of 7075-T6 aluminum alloy.

Two test rigs were used and photographs of these rigs are pre-

sented. Loads were applied by means of a hydraulic Jack. Friction in

the loading was accounted for in one rig but was not established for

the other frame. _

Tabular data_f'the be_ding moment sustained by the specimens at
buckling are presented ...._ing moment sustained at buckling is also

presented in graphical form plotted against parameters obtained from

small-deflection theory. Data indicate that decreasing stiffener

spacing yields negligible gain in strength until a value of spacing to
radius ratio of ½ is reached. Mode of failure data is also obtained.

A photograph of a cylinder after failure is included.

It was determined that any size effect that exists must be small
and hidden due to the scatter of data obtainedfor cylinders of the

same size. No attempt is made to determine the extent of eccentrici-
ties in structures tested.

A graph is presented that was obtained by using small-deflection

theory as a guide and fairing the lower limit of the curves to the ex-

perimental data. It is conjectured that this curve is adequate in pre-

diction of the bending strength of ring-stiffened circular cylinders

where the rings are large enough to prevent general-instability failures.



I

I
I

l
I

I
I

I
I
I

I
I
I

I
l

I

I
,I

The author is at Langley Aeronautical Laboratory.
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30. Reynolds, T. E.: A Graphical Method for Determining the General-

Instability Strength of Stiffened Cylindrical Shells. Navy Depart-

ment, David Taylor Model Basin, Structures and Materials Laboratory,

ResearChlahd Development Report 1106, September 1957.

General instability strength of ex_ernallypressurized, ring-

stiffened, cylindrical shells is considered. Solutions of Kendrick
(Part I, Part II, and Part IIi) are discussed. A short-cut method of

approximating Kendrick's third uo!ubion from 1[endrick's second solu-

tion is presented. Shell radius, thickness, compartment length, frame

spacing, and frame size are considered as significant parameters.

Length to radius ratios of from approximately 2 to i0 are considered

and a wide range of the shell pressure oarmneters are considercd_i
Calculated results are co_,ared with those of Kendrick,s thir<i

solution in tabular form. In all but a few scattered points, results

compare to within I0 per cent of Kendrick's theory. Calculations
for externally framed steel cylinders are presented graphically. The

appendix illustrates the use of the design curves by a numerical ex-

ample. Also included in the appendix is an approximate formula for

the calculation of the cylinder frame strength parameter.

The author is at David Taylor Model Basin. Washington, D. C.
7 References.

31. Ross, R. D.: An Electrical Computer for the Solution of Shear-lag

and Bolted-Joint Problems. NACA TN 1281, May 19&7.

The analog between the distribution of forces in flat stiffened

panels and bolted joints and the current in a ladder type resistor net-

work is used to obtain analogue solutions for the stresses in shear lag,

box beam, and bolted joint problems.

A pilot model of a more elaborate analogue system is described.

Twenty-seven lO00 ohm adjustable resistors with a sensitivity of T 1 per

cent or ± 2 ohms (whichever is least) are used. A wiring diagram and

photographs of the network are included. Current is supplied by elec-

tronic regulating circuits. Current regulator diagrams are also shown.

Currents are measured with a milliameter having a sensitivity of about

¼ per cent of full scale. Errors inherent in the analogue are dis-
cussed.

The analogy between the physical and analogue variables is pre-

sented in tabular form for the case of shear-lag. Boundary conditions

for the physical and analogue cases are discussed. An example problem

is chosen to compare the solution of the analogue with the exact solu-

tion of Kuhn. The procedure for determining the appropriate resis-

tances in the analogue network is discussed and examples are included.

e_e_t of the selection of bay lengths is discussed and examples forThe _ ^

different bay lengths are compared with the exact solution graphically.

The length of the bays is shown to have a pronounced effect on the maxi-

mum stress. A box beam loaded in bending is treated similarly. The

cover panel of the beam is the same as the plate of the previous example.
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Results are plotted graphically and are compared with the exact analysis.
Both shearing and normal stresses are shown.

The analogy (for the bolted-joint problem) between the physical and

analogue variables is also presented in tabular form. Plate constants are

calculated and the appropriate resistances are determined. Results are

tabulated and shown to compare favorably with an analytical method.

The author is at Langley Aeronautical Laboratory.

3 References.

32. Seide, P. : A Donnell-Type Theory for Asymmetrical Benrlinf: and

Buckling of Thin Conical Shells. Guided _ssiles Research Division. The
Ramo-Wooldridge Corp., Report No. GM-T]_-I03, Cnnt_ _ . i_o..,,, (_ r",c',_ _ _ no,....... ,'_.l \ C_'_,_ / --_ 7v,

July 1956.

Asymmetric bending and buckling of circular cones is treated by re-
taining certain terms omitted in the analysis by Hoff. A figure indi-

cating the notation used is presented.

In the case of bending, expressions for the strains and curvatures

of the middle surface presented by Love are used wi_h the modification

in the curvatures of deleting the tenus ir_61vJn[:the circumferential

displacement to define the stress and moment re::;ultants. Equations of

equilibrium and the boundary conditions are esbablished by the principle

of minimum potential energy. The change in potential energy due to

virtual displacements is written and minimized yielding the stress and

moment resultant equations in the axial, circumferential, and radial

directions. The equations of equilibrium are sho_m to be identical to

those for plane stress or strain in polar coordinates if a simple trans-

formation is made relating the transformed polar angle to the actual po-

lar angle and the cone semi-vertex angle. Stress and moment resultants

are written in terms of a stress function and the transformed polar

system. A single fourth order equation is eventually obtained in the

stress function and the normal shell deflection. Expressions for the

tangential and longitudinal deformations are presented.

The procedure for buckling is much the same as that for bending ex-

cept for the fact that the energy expression is modified by adding the

energy stored in the plate durJu_ buckling by the middle surface stress

and moment resultanbs to bhai_ 2rc_en_; prior to buckling. Non-linear

strain expressions proposed by Langhaar are used. By methods similar to

those for bending, a single eighth order equation is obtained for buck-

ling in the variable of normal skin deformation that reduces to a fourth

order equation in the special case of a concentrated load where the

force resultants are given by the membrane stress solution.

In both cases (bending and buckling) the equations reduce to the

Donnell equations for cylinders, the circular flat plate equations, and

the axisymmetric cone equations when the appropriate cone parameter is

varied. The equations are, in both cases, fourth order partial dif-

ferential equations with variable coefficients that are not solvable

except in special cases. It is stated that numerical solutions are apt

to be useless due to the poor convergence of the series solution.

The author is at Ramo-Wooldridge Corporation, Guided Missile Research
Division.

9 References.

I



I

I
I

I
I
I

I

I
I
I
I

I
I

I
I

I

I
I

D _7

33. Seide, P.: A Survey of Buckling Theory and Experiment for Circular

Conical Shells of Constant Thickness. Aerospace Corp. E1 Segundo Calif.,
Report No. TDR-169 (3560-30) TN i, November 1962.

Buckling theory for circular conical shells is reviewed. Small

deflection theory foEns the basis for the major part of the review al-

though large deformation results are mentioned. Axisymmetric buckling

as well as asymmetric cases are considered. Axial compression, combi-

nations of axial compression and internal pressure, external hydrostatic
pressure, combined axial load and external pressure, and torsion are

considered and critical loads are given where results are available.

Edge conditions considered are both simply supported and clamped. Ref-
erences for large deformation results are given.

Available experimental data are compared with theoretical results

for the loading conditions mentioned above. In addition, experimental

results are given for the case of pure bending, bending and internal

pressure, and bending, axial compression and internal pressure for which

there are no theoretical results available. All results are presented

graphically. In the case of combined loading, interaction curves are
presented.

Recommendations for future research are made and gaps in the current
knowledge (theoretical and experimental) are indicated.

The author is at Aerospace Corporation
61 References.

3_. Singer, J.: The Effect of Axial Constraint on the Instability of
Thin Circular Cylindrical Shells Under External Pressure. Technion

Research and Development Foundation, Israel Institute of Technology,
Department of Aeronautical Engineering, Technical Note Mo. l, Contract
No. AF 61(052)-123, September 1959.

The effect of axial restraint on the instability of a cylindrical

shell under hydrostatic pressure or uniform lateral pressure is analysed
by the Rayleigh-Ritz method. Restraints are considered active from

initial loading or active at the start of buckling. Restraints are
applied at cylinder ends.

Axial and hoop stresses are derived for the two cases of end re-

straints. Expressions for stresses and displacements are substituted

into the equation for total potential energy and the usual stability
determinant is formed by minimizing this expression. The critical

pressure thus obtained reduces to the expression obtained by Von _ses
in the absence of axial restraints. The expression derived is for the

case of axial restraint applied at the beginning of loading.
Instability of a cylindrical shell under uniform external lateral

pressure is analysed in the same manner. An equation is presented

for the critical stress which differs from the usual membrane stress by

a factor _ . An expression for _ is presented for both the hydrostatic

and uniform external lateral pressure cases. In _he lateral pressure

case the equation for _ is equivalent to thi_ derived by Batdorf.

The author is at Israel Institute of Technology.
9 References.
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35. Smirnov, A. F.: Some New Methods for Solving Structural Problems
by l,_eansof Computers. Symposium on the Use of Computers in Civil

Engineering. Laboratorio Nacional de Engenharia Civll, Paper No. 71,
October 1962.

A new computational method for solving complex problems in struc-
tural mechanics is presented. The analysis is based on the notion that

the highest order derivative in a differential equation may be repre-

sented by Lagrange polynomials. Hence, the vector of the highest de-

rivative is represented by the polynomial of column and integral ma-
trices.

Initial connecting parameters, represented by matrix equations,

constitute the boundary value problem. A relationship between the

lower and higher order derivatives is furnished employing the matrix

of connection parameters. Forces and moments are then determined by
means of a linear transformation.

In this paper the major difficulty consists of determining the

composition of the integral matrix referred to above. Although this

method is particularly suited for high speed digital con_uters, the

problem is not out of range for the desk calculator in some cases. Ap-

plicability of the approach is extended to both ordinary and partial
differential equations.

rT11=zc author is of _r-,,:_.....,,oJ_ Academy of Construction and Architecture.
770 ]"_c.!::a'c:, ,.c,___;.

36. Suer, H. S., Harris, L. A. and Shone, W. T.: The Bending Stability
of Thin-Walled Unstiffened Circular Cylinders Including the Effects

of Internal Pressure. North American Aviation, Inc., AL 2733, December
1957.

A statisbical, semi-empirical analysis of the buckling stren.?_bh
of unpressurized and pressurized cylinders under axial compression

previously presented by the authors is extended to the bending of mu-
pressurized and pressurized cylindrical shells. In the analysis, a
semi-empirical approach is used to account for the effect of initial

imperfections. For unpressurized cylinders, theoretical parameters

from the classical form of the buckling equation for long cylinders
are used.

Ten tests were performed on unpressurized cylinders and A8 tests

were performed on pressurized cylinders. Cylinders were fabricated

from 0.0032 inch and 0.0087 inch thick, half-hard, 18-8 stainless steel

foil. Overall cylinder lengths were 21.5 inches and cylinder radii

were 8.75 inches. Radius to thickness ratios were approximately lO00
and 2730. Most of the cylinders were fabricated by wrapping the sheet

and using Epon IV to bond 3/8 inch longitudinal seam. Other cylinders
were fabricated by seam welding.

ilTwqseries of tests were performed. In one series, the longi-

tudinal component of internal pressure Was_balanced by an applied axial

compressive load. In the other series, the longitudinal component of
internal pressure was not balanced. An internal pressure variation

range of 0 to 2&_i, was used. A schematic drawing of the test jig

is presented. Cylinders were positioned so that the longtudinal seam

fell on the neutral axis and no appreciable difference in performance

i
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of cylinders of the two types of construction was noted. Internal pres-

sure was pneumatically supplied. Bending and axial compressive loads
were supplied by hydraulic struts and measured with SR-4 load cells.

Buckling loads were visually determined by observing ripples in the cyl-
inder surface.

Experimental results are presented in both tabular and graphical

formand are compared with results of applicable previous investigations.

Photographs of typical buckle patterns for both pressurized and unpres-

surized cylinders are presented. Experimental values of bending buck-

ling coefficient are plotted against:r_dius to thickness ratio and both

a 90 per cent and a 99 per cent probability curve is statistically de-

fined to obtain design data. Due to sparsity of data for nadius to

thickness ratios greater than 1500 additional testing is recommended to

verify the shape of the design curve. Also the lower bound design curve

(99 per cent probability) is suggested for pretensioned cylinders.

The authors are at North American Aviation, Inc.
14 References.

37. Tennyson, R. C.: An Experimental Investigation of the Behavior of

Stiffened Plates in Axial Compression. Institute of Aerophysics,
UTIA Technical Note No. 57, September 1961.

Two experimental test programs are undertaken to study the effects

of curvature on, panels with unstable stringers and compare them with
existing data an_to establish the trend of the variation of ultimate

strength ratio ",_th the stringer-to-plate stiffness ratio while keeping
the stringer-to-plate area ratio constant.

The first test program consists of tests of eight panels made of

2_S-T3 aluminum sheet with a thickness of O.O&O inches. Stringers, of
the same sheet material with a thickness of 0.075 inches were rolled

channel sections attached by means of bonding (HYSOL mixture) and round
head machine screws. The panels had overall dimensions of 16 inches x

18 inches. The stringers were 1.9A inches x 0.707 inches (0.707 inches

being the flange dimension). The 16 inch width of the panel was cast in

Wood's metal. Each specimen had two stiffeners and three bays.

The second test program uses five flat and five curved (radius of
curvature of 32 inches) panels. The same basic construction was used as

in the first test program except that the stringers were made of HOMALITE

photoelastic plastic with a thickness of D.1875 inches. The pa!_l c__d_

were_ngt cast in Wood,s metal.

_ ID addition to the two test programs, an auxiliary program is under-

taken to determine the stress-strain relations of the stringers and plates.
Short (4 inch) pack specimens that consisted of four channel colunms were

tested for each stringer mat_al. Plate material was tested in tension.

Linear theory and Wenzek_s equation are used as a theoretical guide
_or initial panel buckling. Also the theory of Seide-Stein is used. Ex-

_,:_r:i._'_enta].results show good agreement with both theoretical _uides.
fo dctcr!:,ineeffective _vidths, the stress distribution of Sechlcr

a_ _)u_ J._;a_unlcd. This is confirmed by integrating acro_ t;_v_:_ane].

_?J c _J._paringthe computed load with the actual load. The c_cr.u:_,_va.L_._-".... '_

derived effective widths are compared graphically with anals_icai results

I



I

I

il

I

I

I

I

I

I

!

I

I

I

I

I

I

I

I

D 5O

of Sechler and Dunn, and Wenzek. It is found that the analytical results
are rather conservative.

Ultimate strengths of bhe panel are compared with analytical results

of Sechler and Dunn graphically and it is determined that the analytical
results are conservative by a factor of 3 per cent.

The second program allows color photographs to be taken of the

stringers which indicated that the stringer failurc _u_ b_r :;u]cr-bype
bending.

The author is at University of Toronto.

9 References.

3_. Terry, E: L. and c ...._-...... _,,.._._.3. W.: Biaxial Stress and Strain Data on

High Strength Alloys for _cr_i:-;nof Pressurized Co:._o_ents. Chance Vought

Corp., Technical Documentary _eport No. AS:!)T_);;''_,_,'CI, July 1962.

Authors Abstract

A cross shaped specimen is developed for generating complete biaxial
stress-strain curves under l:l and 2:1 biaxial tension stress ratio load-

ing. Tests on several materials have shown that the specimen has good
reliability.

The influence of strength level on the behavior of the 5Crl_oV steel

under biaxial loading is investigated. These tests show that by lowering

the uniaxial strength level from 280 to 260 ksi, the shattering type fail-

ure observed at the 280 ksi level ceased to exist. However, the biaxial
failure strains did not increase as the length level was decreased.

Pressure vessel tests which are conducted show that the shattering

type behavior obtained from the biaxial specimens is indicative of poor
resistance to crack-like flaws. Good correlation was obtained between

the failure stresses from the pressure vessels and the biaxial specimens.
Notch toughness tests are conducted to obtain a correlation be-

tween these tests and the biaxial specimen tests. No correlation could

be shown between the notch toughnesa values and the biaxial failure

strains. However, the notch toughness tests corroborated the conclusion

that the shattering type failure in the biaxial test is indicative of poor
resistance to crack-like flaws in the material.

The biaxial stress and strain data are presented in a form which can

be used directly in the design of biaxiallyloaded components. In addi-

tion, the test materials are ranked according to the efficiency para-

meters ',biaxial ductility ratinT," "resistance to crack-like flaws,, and

,,biaxial strength / wei_ht_i

The authors are at Chance Vought Corporation.
12 References.

39. van der Neut, Arie: General Instability of Orthogonally Stiffened
Cylindrical Shells. NASA TiC D-1510, December 1962, pp. 309-321.

Recent work at the National Aeronautics Research Institute
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(Amsterdam) is reviewed. This work involves two structural schemes--the

orthotropic shell and the shell with continuously distributed stringers

and discrete rings. Only the case where the buckling wave length is of

the order of twice the distance between rin_ is considered in the latter

scheme. More recent developments are discussed that account for pressure,

the correct stiffness matrix for the skin panels in post-buckling, and for
stringer bending due to hoop stresses. No numerical evaluation of the

stability equation with the use of the stiffness matrix is being performed.

The applicability of linearized theory in prediction of buckling
loads is discussed. Conclusions are drawn that, due to the coexistance

of symmetric and several asymetric modes, non-linearities must be intro-

duced to produce better correlation between experiment and theory. Im-

perfections in the structure that cause eccentricities in section prop-
erties are discussed. Imperfections are confined to the _]_ where a

difference in the local radius of the cylinder and the average cylinder

radius is on the order of the panel thickness. Ring imperfections can

usually be kept small in comparison to ring height and it is assumed that

the linear theory is adequate in the prediction of buckling loads in struc-

tures with small ring imperfections. Pressurization is found to restore,

to some extent, the imperfections in secions and bring about closer agree-
ment with linear theory.

Earlier work on orthotropic shells evolved five significant struc-

tural parameters and two mode parameters. Expressions involving the seven
parameters were simplified in the earlier work for five classes of buck-

ling modes classified by the ratio of longitudinal and circumferential

wave lengths. Two cases referred to short longitudinal waves and small

numbers of circumferential waves and two referred to long longitudinal
waves. In the _._]_+_,_ no explicit formula for _-_÷_-_ load could be ob-

tained but a rapidly convergent numerical solution was possible. Earlier

work also considered the use of external or internal stiffening. The
former is considered more efficient.

Earlier work on shells with discrete rings involved the inter-

action of six structural parameters and two mode parameters that govern
the ring displacements. Only short wave lengths are considered due to

the discrete rings. Comparison of calculated buckling loads predicted

by orthotropic shell theory and discrete ring theory indicates little

difference in these predicted loads. This is shown graphically as a

plot of the load parameter versus the number of rings per half wave
length.

Recent work reviewed includes the post-buckling behavior of skin

panels, load pressure difference, and hoop stresses that induce stringer
bending.

Post-buckling behavior is discussed. The stiffness matrix is

presented and modifications of the prebucklingmatrixto obtain the

post-buckling matrix are discussed. The use of flat panel data in curved

panel calculations is discussed and it is conjectured that flat panel

data is applicable in general instability curved panel analysis if al-
lowances are made for initial curvature.

Reduction of lateral panel stiffnesscs dus to hoop stresses not

balanced by pressure difference is discussed. Differences in stringer

and ring deflection due to stringer bending is considered and it is pro-

posed that future research include a method by which spring stiffness

in a mechanical model of a structure, where rings and stringers are
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connected with springs, can be determined as a function of wave length
to ring pitch ratio.

The author is at Technological University. Delft _Netherlands).
5 References.
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APPENDIX E

OF AN ORTHTROPIC CIRCULAR CYLINDER SUBJECTED TO AN

AXIAL LOAD, END MOMENT AND

UNIFORM RADIAL PRESSURE

Prepared by

William S. Viall

Carl C. Steyer

The work reported in this appendix was supported jointly by NASA

Contract NAS 8-5168 and NASA research grant Ns@-381 and was also

published by the University of Alabama Research Institute as Re-

search Report No. ii.
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THEORETICAL ANALYSIS OF THE STATIC GENERAL INSTABILITY
OF AN ORTHOTROPIC CIRCULAR CYLINDER

SUBJECTED TO AN AXIAL LOAD, END MOMENT, AND UNIFORM RADIAL PRESSURE

by

William S. Viall +

++
Carl C. Steyer

I. SCOPE

This analysis obtains numerical results using a digital computer program for the

general instability eigenvalue problem that is presented for the dependent buckling load

condition at any combination of the independent loading and geometry. It is not intended

that this analysis be experimentally verified as a part of this investigation.

II. INTRODUCTION

Missile tank design is subjected to two design criteria; the material strength for all

possible maximum load conditions, and the structural stability at these possible maximum

load conditions as well as intermediate loads. The analysis of this report is limited to the

stability criteria of missile design.

A missile tank is loaded with different combinations of axial load, end moment,

and radial pressure. The axial load, either compressive or tensile, is a constant force per

unit cross-sectional area and is colinear with the generating element of the tank. The end

moment is a varying force per unit cross-sectional area and is colinear with the generating

element of the tank. This force varies linearly with the distance between a diameter that is

normal to the plane of the moment, and the element of cross-sectional area. The radial

pressure is internal or external, depending upon the sign given to the pressure difference.

The positive directions of axial load, end moment, and radial pressure are as shown

in Figure 2 and are chosen to induce tension on the element of the tank at the origin of the

axes, Figure 1.

+ Research Assistant, University of Alabama Research Institute
++ Professor of Engineering Mechanics, University of Alabama, Huntsville, Alabama
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Functions performed by missile tanks require that they be stiffened axially and cir-

cumferentially with internal baffles_ internal and external stiffeners, bulkheads, etc.

These baffles and stiffeners are integral parts of the missile tank and it becomes possible to

analyze the tank as an orthotroplc circular cylindrical shell. The orthotropic circular

cylindrical shell is called circular shell or shell in the remainder of this report.

The loads applied to the shell are not functions of time, therefore, the investigation

is limited to the static case, and the dynamic case is neglected.

The technique used in this investigation of the cylindrical shell parallels the work

of Bodner (1)*, in that the general instability differential equation of equilibrium developed

is a Donnell type differential equation and is obtained by the application of variational

methods to the expression for total change in energy during buckling.

Results can be obtained from the Donnell Type differential equation by any one of

several different methods: Ritz Method, Fourier Series Method, Galerkln Method, Method

of Frobenius, etc.; all of which will yield a satisfactory solution. The Ritz Method is used

in this investigation. The results obtained by the Ritz Method are as accurate as the assumed

deflection expression and the solution becomes an exact solution when the deflection expression

takes the form of an infinite Fourier series. The Ritz Method is mathematically the simplest

of the methods mentioned above and it is readily programmed for digital computer applica-

tions.

The points of stability for the total change in energy expression of a conservative

system are defined by the law of minimum potential energy when the variational principal

is applied to the total change in energy. The first variation of the total change in energy

is equated to zero, thereby obtaining the intrinsic boundary conditions and the equilibrium

equations of the system. The Donnell Type differential equation is obtained by applying a

differential operator to the equilibrium equations of the system. An assumed deflection

expression is substituted into the Donnell equation and the resulting residual force equation

is minimized for each of the unknown constants of the deflection expression. This minimi-

zation yields a system of homogeneous simultaneous equations, and the stability determinant

of these equations is solved for the independent variable.

*Indicates reference number - see Appendix B.

I
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The law of minimum potential energy requires that the second variation of the total

change in energy expression of the system be positive for the points of stable equilibrium

and negative for points of unstable equilibrium. The second variation is not performed due

to the anticipated difficulty of the mathematics, and the minimum positive value of the

independent variable is assumed as the point of stable equilibrium.

Experimental evidence obtained by Harris, Suer, Skene and Benjamin (2) indicates

that isotropic circular shell test specimens subjected to axial load with and without radial

pressure fail somewhere between the stable and unstable equilibrium points and that the

failure point is primarily dependent upon the quality of the specimen. The almost perfect

specimens fail at the point approaching the point of unstable equilibrium. As the imper-

fections of the specimens become larger or more numerous the specimen fails at a point

closer to the point of stable equilibrium. Theories developed for unpressurized cylinders

with axial loads by von K_rm_n and Tsien (3), Leggett and Jones (4), and Tsien (5) using

the large deflection theory have attempted to explain the deviation between theoretical

and experimental results. These theories are still considered as inadequate since their re-

sults cannot be readily adapted as design criteria. A similar approach was used for pres-

surized cylinders with axial loads by Donnell and Wan (6) with more success, but a deviation

still exists.

Small deflection theory of shell analysis states that all terms greater than second

degree in the total change in energy expression may be neglected. The small deflection

theory is used in this investigation and allows the development of the Donnell Type linear

differential equation which can be readily solved for a certain partlcula,r type of loading.

That the small deflection theory is applicable to certain shell configurations is questioned

by some investigators as indicated above. The answer to this question is left for further

analytical work associated with the experimental evaluation of this investigation.

The classical small deflection theory for isotropic shell stability is limited to the

range R/h-values** less than 200. Some missile tanks have R/h-values of 1000 and there

have been indications that this value may reach 2000. This indicates that the R/h-values

for orthotropic shells that represent stiffened shells should be modified, or the valid range

See Appendix A for list of symbols and definitions.
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of the theory extended for orthotropic shells. Arguments for a modification of R/h-values

using a modified h-value, which we will call (heq), are based on the dependence of the

stability criterion on the bending rigidity of the shell. Similar arguments are used for the

extensional stiffness. Suggested values for (heq) are:

where I
eq

= leq)lheq (12 /3

is the composite moment of inertia of the shell plus stiffeners;

L = +"eq [6(ix x !ss) ]1/3

where I and I are the equivalent composite moments of inertia in the axial and clrcum-
xx SS

ferentiaJ directions, respectively; or h = f(r), where r is the radius'of gyration of a
eq

unit element of the orthotropic shell. It is believed that if the shell is analyzed with

R/h = 200 the small deflection theorywill be applicable.
eq

Investigation is being conducted (7) which may allow the proper selection of an

R/h-value for orthotropic shells with an h -value. Again the question of an R/h -value
eq eq

for orthotropic shells is left for experimental evaluation and/or results of investigations in

progress.

For short cylinders (R => L) the assumed deflection express|on, Equation 26, reduces

to the Euler column expression when the cylinder is simply supported, if the circumferential

deflection terms become constant. For long cylinders (R =<L,/3) the buckling becomes

independent of the boundary conditions. In these ranges this analysis is valid for values

of _ R/L, but the intermediate range (L --<R --<L/3) the results should a_ain be experimentally

verified.

III. ASSUMPTIONS

The following assumptions are made in this analysis of circular shells.

1. The shell is composed of linearly elastic material.

2. The stiffeners and baffles are integral parts of the shell, thus creating an ortho-

tropic shell, and the unstiffened and unbaffled shell reduces to the isotropic case.

3. The shell stresses in the unbuckled but stressed state are determined by elemen-

tary beam theory.
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4. The strain equations, Equation 1, are similar to those used by Bodner (1) except

for certain second degree terms. The second degree terms are included in this analysis

since their effect although unknown, is considered significant. The last term on the right

hand side of the e equation, Equation 1 includes a non-dimensional constant k. With
SS

values of k equal to one and zero, the effect of this term on the final results can be

determined.

5. The work in the circumferential direction is neglected in the determination of

the total change in energy expression. This is based on the symmetry of both of the
ss

stresses and the cylindrical shell geometry.

6. The pre-buckling deformation discussed by Donnell and Wan (6) and Stein (8) are

neglected. The effect of these deformations should be investigated during experimental

verification.

7. In the development of the Donnell equation, all terms above the second order

in the total energy expression are discarded. Neglecting the terms above second order

simplifies the mathematics and insures a small deflection theory approach to the analysis.

8. Localized or panel instability is neglected in this analysis and only the general

instability of the shell is investigated.

9. The assumed deflection expression, Equation 26, contains only 6 circumferen-

tial terms, but can be extended to any number desired. The use of six terms requires that

a cub|c equation be solved and this solut|on can easily be programmed. Additional terms

in the deflection expression would complicate the computer program and possibly produce

a computer overload. The axial term in the deflection expression contain- a nondimen-

sional constant m which is used to obtain any number of buckling modes.
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CYLINDRICAL SHELL GEOMETRY AND STRESS-STRAIN RELATIONS
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Fig. 1: Coordinate System and Displacements of the Circular Cylindrical Shell.

The coordinate system and corresponding middle-surface displacements for the

circular cylindrical shell are shown in Figure 1.

The expressions used for the buckling strains in the shell wall; written in terms of

the shell middle-surface displacements, u, v• and w; are the same as those given in Reference

(1) with some additional terms, and are written as follows:

2
e =u, x+(1/2) w 'x zXX - W • XX

e =v, - (w/R) +(I/2)( +v/R) 2-z(w, +kw/R 2)
SS S W • S SS

e =(I/2)[u, +v, x +w, (W,s+V/r)]-z(w +v,/2R)XS S X ' XS

(1)

I

I
I

I

where exx , ess, and exs, are the axial• circumferential, and shear strains• respectively,

that occur during the buckling process; R is the radius of the cylinder; and k is a nondimens-

ional constant. When the subscript or subscripts associated with the middle-surface

displacements are preceeded by a comma, they denote differentiation with respect to the

indicated succeeding coordinate variables.

The stress-strain relationships for a homogenous orthotroplc mnterial in generalized

I
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plane stress, as given by Reference (1), can be written as follows:

= E (e + ess)/(l - Pxs)xx x xx Psx Hsx

a = E + /(1 - Pxs)ss s (ess Pxs exx) Psx

(7 =Ge
XS XS

where axx, ass, and axs, are the axial, circumferential, and shear stresses, respectively;

E and E are the moduli of elasticity averaged over the shell thickness in the axial and
X S

circumferential directions, respectively; G is the average shear modulus; and Pxs and psx

are Poisson's ratios from the x to the s and s to the x directions, respectively.

For convenience in later calculations certain constants, similar to those given in

Reference _1), are introduced and are written as follows:

a1 =Exh/2(1 - PxsPsx)

a2 = Eh/2(1- )s PxsPsx

a3 = Gh/8

D 1 = Exh3/24(1 - PxsPsx)

D2 = Esh3/24(1 - PxsPsx)

D 3 = Gh3/96

where h is the shell thickness; the g's correspond to the extensional stiffness of the shell;

and the D's correspond to the bending rigidity of the shell.

The following relationship between the elastic constants, based on Maxwell's

reciprocal theorem, is noted for later use.

E = E Psxs Pxs x

(2)

(3)

(4)
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Fig. 2: Loading of the Circular Cylindrical Shell

I The positive shell loads Po' Po' and M are shown with respect to the coordinate
o

system; where Po is the uniform radial pressure, P is the resultant axial load, and M

II o ois the resultant end moment. The positive loads are directed in order that positive stresses

(tensil) are induced at the origin of the coordinate system.

I The following stress resultants are defined:

I
I

I
I

I
I

h/2 h/2 _ h/2

N = --/-$h'_o dz N = Sn/,''_° dz N = --/'rh'_o dzXX XX SS - SS XS XS

where N%x , N"_s , and N" are the axial, circumferential, and shear stress resultants inxs

the shell wall, respectively, prior to buckling; and axx, -ass, and axs are the axial,

circumferential, and shear stresses in the shell wall, respectively, prior to buckling. In

general the barred symbols indicate stresses, strains, and stress resultants in the shell prior

to buckling, while un-barred symbols indicate stresses and strains that occur in the shell

during the buckling process.

According to elementary beam and shell theory, the shell loading will induce the

following stresses in the shell wall.

I

(s)

I
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= (l/h)[M cos(s/R) ÷
xx a (R/2)(Po + Po)]

= (l/h) po RsS

m

a = 0
xs

where M =Mo/_R 2 and Pa =Po/_ R2.a

Substituting Equation (6) into Equation (5) and integrating over the shell thickness

the stress resultants become:

_ss = Po R

N-xx = MaCOS (s/R)+ (R/2)Co° + Pa)

VI. STRAIN ENERGY, POTENTIAL ENERGY, TOTAL CHANGE IN ENERGY, AND
VARIATION IN TOTAL CHANGE IN ENERGY EXPRESSIONS.

The instability differential equations of equilibrium will be derived using a procedure

similar to that given in Reference (1). The criterion of buckling for an elastic system is

that the potential energy of the system is a minimum. Stated mathematically, the variation

of the change in energy of the system due to buckling• with respect to the displacements,

must be zero; or:

s (u +v)=0

where U is the change in strain energy of the shell during buckling• V is the change in

potential energy of the applied loads during buckling, and 6 indicates a variation of the

sum with respect to displacements.

The change in the strain energy of the shell is given by the following expression:

m m

U = J'V [ (_' e + a e + (7 exs ) + (I/2)( a e + a e + axsexs ) ] dVXX XX SS SS XS XX XX SS SS S
S

where a - and a are the membrane stresses in the shell wall in the stressed but
XX • ass e XS

unbuckled state and they are assumed to be constant during buckling; axx, ass' and axs are

(6)

(7)

(8)

(9)
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the superimposed buckling stresses; and e
exx' ess' xs

the volume of the shell wall.

are the buckling strains; and V is
S

The change in potential energy of the shell during buckling has components in the

z and x directions and the total change in potential energy during buckling is given

by the following expression:

I mV =-'_A Po(-W)dAs -J'A _xxu dAe = J'A PoWdAs -J'A h axxU'xdAs
s e s s

I where A and A are the surface and cross sectional areas of the shell, respectively; ands e

u is given by the expression u = _ U,x dx.

I
I
I

I
I
I

I

I

I
I

I

The total change in energy, strcln energy plus potential energy, during buckling

is obtained by adding Equation (9) to Equation (10); substituting Equations (1), (2), (4), (5),

(6), and (7) into Equations (9) and (10); and integrating over the shell thickness. The

expression for total change in energy is given by the following expression:

U +V=J" A
S

2 R/2) + W,s v + (v2/2R) + (w 2x R/4) ]{Po [V'sR + (W's

+ P [W2,xR/4] +M cos (s/R)[W2x/2]} dAa a s

+ J'A [[Exh/2(1-PxsPsx) ][u2'x] + [Esh/2(1-PxsPsx)][V2's + (w2/R2)
S

+;A
S

- (2v, sW/R) + Pxsu ' x v's - (Pxsu' xw/R)]

2 2 2 2 (w2 v2 R2
+[Gh/8][v 'x +u's +W'xW's + x / )+2V,x u,s+2v,xw,xw,s

+ (2V,xW,xV/R)+2U,sW,xW, s +(2U,sW,xV/R) +(2 2 , W,sV/R)]} dA
x S

{ Ih3Ex/24(1-_,s#xs) I fW,2xx+ _sxw,xxw,ss÷(k_sxw,xxW/R2)1

2 (2W,sskw/R 2) (k2w2/R 4)+ [ h3E/24(1- PsxPxs) ] [w 'ss + +

+ Pxsw'xx w'ss + (Pxskw'xx w/R2) ]

+[Gh3/96][4w 2 +(V,x2/R 2) +(4W,xsV,ZR)]}dAIXS S

(10)

(11)
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Substituting Equation (3) into Equation (11) and discarding all third order and

greater terms the expression for total change in energy reduces to:

u +v = _ { Po[V,sR+(w,_R/2)+w +(v2/2R)+(w,2 R/4)]nsV X
S

+Potw__j4j+_oCO,(s/_rw_/_l

+a 1 [U,x2] +a2 iv 2 + (w2/R2) -(2v ,sW/R) + PxsU,xV,s-(PxsU,xW/R) ]

2 2
+a3[V'x +U's+2V'xU's ] +D1 [W'2xx+PsxW'xxW'ss +(kPsxW,xxW/R2)]

2
+ D2 [W,ss+ (2W,sskw/r2)+ (k2w2/r4)+ _xsw,xxw,ss+(_xskw,xxW/r2) ]

where al, a2, a3, D1, D2, and D3 are as defined in Equation (3). Several authors,

including the author of Reference (1) have proven that the ommitted terms are negligible.

The use of terms up to the second order will result in a linear differential equation.

Applying the variational principal,

6F = a-'ySF8y + _-YY'SFBy'+--BF 8y" + .......... .+_..TnSynSFBy" o)/

to Equation (12), the following expression for the variation in the total change in energy with

respect to the displacements u, v, and w is obtained:

6(u+v) = _ I {°2 [(2w/R2)- (2v,s/R)- (_xsu,x/R)]
S

+ D2 [ (2w, ssk/R 2) + (2 Pxsw , xxk/R 2) + (2k2w/R 4) ]} 8w

+ { MaW ,xcos(s/R)+ (PoRW,/2) + (PaRW, x/2) }8w, x

+ {Po(W,s R + v) } 6W,s

+{Dl[2W +2t XX JJsx w ' SS + (2 PsxkW/R 2) ]}Sw,
XX

(12)

(13)

(14)
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+ {02 [2W,ss + (2kw/R 2) +21axsW,xx ] } 8W,ss

+ { D 3 [8w, xs + (4v,/R) ] } 8w, xs

+{_1 [2U'x] + a2 [IJxsV's - (tJxsW/R) ]} 8U'x

+{a 3 [2u, s+2v, ]} 8U,s+ {Po [(v/R) +w, ]}SvX S

(14 Con't.)

+ {_3 [2V'x+2V's ] + D3 [(2V'x/R2) + (4W'xs./R) i } 8v, x

R + a2[2V,s (2w/R)+ ]} 8v IdA+ [Po - PxsU'x 's s

Equation (14) is simplified further by setting dA = dxds; applying the following
s

identity from calculus of variations, 8 dx _ d (Sx); and integrating between the limitsdy dy

of 0 to L for dx, and 0 to 2_R for ds. The final form of the expression for the variation

in the total change in energy of the orthotropic cylindrical shell during the buckling

process is as follows:

L 2_tR

J{2a2[(w/R2) - (v,Z'R)- (_,xsU,x/2R)]

R2) Pxsw , xxk/R2)+ 2D 2 [(2W,ssk/ + ( + (k2w/R 4) + W,ssss + IJxsw'xxss ]

- [Maw, xxCOS(s/R) + (RW,x/2)(Po + Pa) ]-[Po(W' ssR + v, s) ]

+ 2D 1 Iw, + + ( Iasxkw,x/R 2) ]XXXX l'Isx w ' XXSS

[ 2w, xxss+ 4D 3 + (V,xx/R) ] } 8w

(]5)

+{-2 al[U,xx +(lasxV,xs/2)- (IJsxW,/2R)]-2a3[U,ss +V,xs ]}Su

v

+{-2a 2 [V,ss-(W,/R) +(HxsU,x/2)] + [Po(W,s +_)]

- 2 a3 [ v, xx + u ' xs] - 4D3[ (v, xx/2 R2) + (w, xxs/R) ] } 8v 1ildxds

I
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L I - + iJxs w+ fo {[Po(W's R +v) ] 2D2[w,sss 'xxs + (kw, s/R 2) ]

2=R

-4D3[2W'xxs + (V'x/R) ] }o 8w

+{2a3[U,s÷ v, x ]}2oTrR 6u

+ {po R + 2 a2 [V,s -(w/R) + (PxsU,x / 2) ]}2o=R 6v

+{2D2[W'ss + 'lJxsw"'xx +(kw/R2)]}21TRSw'so ] dx

2"R I+ ,_ { [maW,x c°s (s/R) + (RW,x/2)L°o + Pa) ]

-2D 1[w + I_sx + ( /R 2) ]• xxx w, xss iasxk w, x

-4D 3 [2w + (V,x/R) ] L'xss }o 6w

+{ 2a I [U,x ] + 2a 2 [(IaxsV,/2) - (PxsW/2R)]}o L 6u

, x/2R2 ) L+{2a 3 [v, x +u, s ]+4D 3 [(v +(W,x/R)]}oSV

+

+{2D 1 [w, + +( w/R 2)]}L 6wxx tJsxw' ss Hsxk o

j {4D3[2W,x s (V'x/R)]}oL 12_R+ gw

o

'x] ds

(15 Can't.)

VII. EQUILIBRIUM EQUATIONS AND NATURAL BOUNDARY CONDITIONS

The variation in the total change in energy of the system must vanish for any of

the arbitrary virtual displacements 8u, 8v, and 8w when the system is in equilibrium. When

Equation (15) is equated to zero the integrands of the surface integral must vanish, since

the virtual displacements are arbitrary, and the following stability equilibrium equations

are obtained:

u [ - a3 iaxs/2)] + v v, D3/R 2) -'xs -(a2 [Po/2R] + xx [(- a3 ] +v'ss [- a2 ]

+ W,xxs[ - 2D3/R] + W's [@0/2)- (a2/R)] =0

(16)

i
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V,xs [- a3-(a2 Pxs/2) ] + U'xx [ - al] + u 'ss [- a3 ] + w, x [a 2 px s/2R ]=0

U,x [- a2Pxs /2R] + V,s [(-a2/R) +(-Po/2)] +V,xxs [2D3/R]

+w [( a2/R 2) + (k2D2/R4)] +W,xx [(2D1 Psxk/R2) - (ma/2) cos (s/R)-(R/4)(Po+Pa)]

+w [(2D 2k/R 2)- LOoR/2)] +w [D 1] +w, [D 2]
eSS ' XXXX SSSS

+ w [2 + 4D 3 ] = 0'xxss PsxD1

The following natural boundary conditions are obtained from Equation (15) when

the constant term and the integrands of the line integrals vanish for any arbitrary virtual

displacement,and derivative of an arbitrary virtual displacement.

[w, + ]L ]2"nR=o
xs (V'x/2R) o Jo

[w, + + (kPsxW/R 2) ]../o = 0
xx JJSXw ' SS

[w, ss + Pxs w, xx + kw/R2 ]o2_R = 0

2_R
[u, +v, ] =0

S X 0

[2u, + 's (PsxW/R)]o L = 0x Psxv -

.2_R
[po R+2a 2 (v, s-w/R+ pxsu,x/2) jo =0

[a3(v , +U,s) +2D 3 (V,x/2R2 +w'xs/R) ]L =0
x 0

R + v) -2D 2 (w[Po(Wls isss + Pxsw' xxs + kw,s/R2)

_4D3(2W,xx s + V,xx/R ) ]2TrRo = 0

[Maw,xCOS (s/R)+ (RW,x/2)(Po + Pa)- 2D I (W,xxx + Psxw'xss + Psxkw'x/R2)

I

-4D3(2W'xss + V,xs/R) ]o = 0

(17)

(18)

(19)

i
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DEVELOPMENT OF A DONNELL TYPE DIFFERENTIAL EQUATION FOR THE

and:

STATIC CASE

The stability equilibrium equations are written in the following form:

= aPlV + + a2v, + +U'xs a4V'xx ss a5W'xxs aP2W's

V_ = a + a3U,ss +xs lU'xx a6W'x

ClU,x +cplv , + =b4w+[bP2-M R_ I_ o .s c2V'xxs a _°s_s/")]W'xx + bPlW'ss

aPl = Poa7

aP2 = Poa8 + a9

bPl = Po b5 + b6

bP2 = Pob7 + Pab7 + b8

cPl = PoC3 + c 4

a 1 = -2 al/(Pxs a2 + 2 a3)

a2 = -2a2/( Pxs a2 + 2 a3)

a3 = -2a3/( Fxs a2 + 2a3)

I a4 = -2(D 3

I

I

I

+ a3 R2)/R2( Pxs a2 + 2a3)

as= -4D3/R(Pxs a2 +2a 3)

a+= a2_x/R(_xs°2 +2°3)

a 7 -- l/R( Pxs a2 + 2a3)

a 8 = l/(Pxs a2 + 2 a3)

+blW,xxxx + b3W,xxss + b2w,ssss

(l&_)

(17a)

(18a)

(20)

(20 a)

I
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I b 1 = 2D 1R
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I b2 = 2D2R

b3 = 4D 1RPsx+8D3 R

I b4 = 2(R2 a2 + k2D2)/R 3

I b5 = _R2

b 6 = 4kD2/R

I b7= -R2/2

(20a Con't. )

i b8 = 4PsxkD1/R

Cl = a2 Pxs

c2 = -4D 3

'1 c3 = R

i c4 = 2a 2

I Q=al

I the following form:

I Qu=- [a6aPlW, x

Q =- [(alaP2I v

I

I

I

A linear differential operation is defined as follows:

82 82 a4 84 84
+ _ +ala4 m +(ala 2 +a3a 4-1) +a2a 3

aPl 8x 2 a3aPl 8s2 8x 4 8x28s 2 8s4

By successive differentiation and combination, Equations (16a) and (17a) will have

+ (a2a 6 + aP2) w + a4a6w, + a ]' XSS XXX 5 w ' XXXSS

+ a 6) w + + a + a3asW ]'xxs a3aP2W'sss lasW'xxxxs 'xxsss

Operating on Equating (18a) with the differential operator defined in Equation

(21) results in the following:

Q(ClU, x + cPlV, s + c2V,xx s)

= + +blWQ [b4w + bP2W,xx-MaR cos(s/R) W,xx bPlW,ss 'xxxx

+ b3w,xxss + b2W,ssss ]

(21)

(22a)

(225)

(18b)
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By utilizing Equations (22a) and (22b), all the u and v terms in Equation (18b)

can be eliminated. The resulting equation, an eighth order differential equation in w ,

is the required Donnell-type differential equation and is given as follows:

+ h w, + h w, +h8ow' xxxxxxxx 62 xxxxxxss 44 xxxxssss h26 w,xxssssss

+ h w, + [ + +[ +08 ssssssss h60 hc6oMacoS(s/R) ] w, xxxxxx h42 hc42Ma c°s(s/R)] w' xxxxss

+ [ h24 + hc24%cos(s/R11 w, + + %sin(s,/R) w,"" "xxssss ho6w'ssssss hs41 xxxxs (23)

+
hs23Masin(s/R) w, + [ + ] w, + [ + hc22M acos(s/R)]w,xxssxxsss h40 hc4oMac°S(s/R) xxxx h22

+ + [h20 + ] w, + = 0+ h04 W'ssss hs21Masin(s/R) W'xxs hc2oMac°S(s/R) xx ho2w'ss

where:

h80 = d80

h62 = d62

h44 = d44

h26 = d26

h08 = do8

h60 = d60 + e60 Po + f60 Pa
(24)

hc60 = g60

h42 = d42 + e42Po + f42 Pa

h
c42 = g42

h24= d24+e24P o+ f24 P

hc24 = g24
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h06 = do6 + eO6Po

hs41 = g41

hs23 = "q23

- 2+
h40 -- d40 + e40P o + e40P o ef4oPo P

hc40 = g40 + eg4oPo

- 2
h22 = d22 + e22 Po + e22Po + el22 PoP

hc22 = eg22 Po + g22

- 2
h04 = do4 + e04 Po + e04 Po

m B

hs21 = eg21 Po + g21

h20 = e20 Po

hc20 = eg2oPo + g20

h02 = eO2P°

d80 = ala4b 1

d62 = alaSC 2 + bl(ala 2 + a3a 4 - 1) + ala4b 3

d44 = a3a5c 2 + a2a3b 1 + b3(ala 2 + a3a 4 - 1) + ala4b 2

d26 = a2a3b 3 + b2(ala 2 + a3a 4 - 1)

do8 = a2a3b 2

d60 = ala4b 8

(24 Con't. )

(25)
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f60 = ala4b7

g60 = -Rala4

+ ala4b 7
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I d42 = a5c 1 + ala5c 4 + ala9c 2 + a6c 2 + b8(ala 2 + a3a 4 - 1) + ala4b 6

I

I
I
I

I

e42 = ala5c 3 + ala8c 2 + ala4b 5 + a3a7b 1

f42 = by(ala2 + a3a4 - 1)

+ ala7b 3 + b7(ala 2 + a3a 4 - 1)

g42 = -R(ala2 + a3a4 - 1)

d24 = a3a5c 4 + a3a9c 2 + a2a3b 8 + b6(ala 2 + a3a 4 - 1)

e24 -- a3asC 3 + a3a8c 2 + bs(ala 2 + a3a4 - 1) + a3a7b 3 + ala7b 2 + a2a3b 7

f24 = a2a3b7

I
I

I

I g24 = -Ra2a3

do6 = a2a3b 6

e06 = a2a3b 5

g41 = 2(ala2

g23 = 4a2a3

+ a3a7b 2

+ a3a 4 - 1)

I d40 = a4a6c 1 + ala4b 4

i
!
I

e40 = ala7b 8

el40 = ala7b 7

g40 = {1/R}{ala 2 + a3a 4 - 1)

(25 Con't. )

!
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! e40 = ala7b 7

I

I

I

I

d22

e22

e22

el22 = a3a7b 7

g22 = (1/R)(6a2a3)

eg22 = a3a7 R

= a2a6cl + alagC 4 + a6c 4 + b4(ala 2 + a3a 4 - 1) + a9c 1

= a8c 1 + ala9c 3 + alasC 4 + a6c 3 + a3a7b 8 + ala7b 6

= ala8C 3 + ala7b 5 + a3a7b 7

(25 Con't. )

I do4 = a3a9c 4 + a2a3b 4

l
I

I
I

e04 = a3a9c 3 + a3a8c 4 + a3a7b 6

e04 = a3a8c 3 + a3a7b 5

eg21 = 2a3a 7

g21 : (I/R2)(-4a2a3)

e20 = a6a7cl + ala7b 4

I!

I
I

eg20 = (I/R) a3a 7

g20 : (1/R3)(-a2a3)

e02 = a3a7b 4
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DETERMINATION OF THE CRITICAL RESULTANT END MOMENT BY USE OF THE RITZ
METHOD
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The classical Ritz method solution for the static buckling of a cylindrical shell, as

shown in Reference (1), requires that an assumption be made for the shape of the buckled cy-

linder. The following expression is assumed for the radial deflection:

W _- [ A 1 cos (s/R) + A2

+ A 6 cos (6s/R) ]

cos (2s/R) + A 3 cos (3s/R) + A 4

[ sin(m_x/L) ]

cos (4s/R) + As cos (Ss/R)

(26)

where A 1 through A 6 are arbitrary displacement parameters; and m is an arbitrary positive

interger representing the number of buckling modes in the axial direction. The assumed

radial deflection expression satisfies the boundary condition for the coordinates x and s.

These boundary conditions, for a simply supported shell, are zero deflection and moment at

the ends of the cylinder and a periodicity of 2_, respectively, for the x and s coordinates.

The boundary conditions represented mathematically are:

w(x,s) =w(0,s) =w(L,s) = 0 (27a)

W,xx(X,S)= W,xx(O,s)= W,xx(L,s) = 0 (2Yb)

for the

for the s

x coordinate, and:

w(x,s) = w(x,s + 2_) (27c)

coordinate.

For convenience, Equation (26) will be written in the following summation form:

w = [A cos (ns/R) ] [sin (m'rrx/L) ] (26a)
n

where the n, an interger, is the summing index and has the values 1 through 6.

Substitution of Equation (26a) into Equation (23) will result in a residual force

per unit area F, and Equation (23) can be written in the following form:

F= [ sin (m_x/L)] [G 1 +G 2 +G 3 ] (28)
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G 1 =M A B cos(s/R) cos(ns/R)a n In

G 2 = MaAnB2n sin(s/R) sin (ns/R) (29)

G 3 = An B3n cos (ns/R)

and

B
In

B2n

B3n

R3 [ - hc60 ( ;k6/R 6) - hc42 ()_4n2/R6) - hc24 (X2n4/R6) + hc40 ()_4/R4)

+ hc22 (;k2n2/R 4) - hc20 (2_2/R2) ]

R3 [- hs41 (;k4n/R 5) -hs23 (,k2n3/R 5) +hs21 ()_2n/R3) ] (30)

R3 [h80 (;k8/R 8) + h62 ( _n2/R 8) +h44 ()_4n4/R8)+h26 (;k2n6/R 8)

+h08 (n8/R 8) - h60 (;k6/R 6) - h42 (),4n2/R6)- h24 (),2n4/R6)

- h06 (n6/R 6) +h40 (X4/R 4) ÷h22 (_2n2/R4)+h04 (n4/R 4)

- h20 ()_2/R2) - h02 (n2/R2) ]

= m_R/L

Equation (26a) can be written again with a summation notation but using a dif-

ferent index, in the following form:

w = [A cos (rs/R)] [sin (m_x/L)] (26b)
r

where the

(26b) can now be written in the form:

r, an interger, is the summing index and has the values 1 through 6. Equation

w = G sin (mttx/L) (31)
o

where

G = A cos (rs/R) (32)
o r

I



!

I

I
I

I

I

I
I

I
I
I

I

I

I

1
I

I
I

E -23

The work done by the residual force, F, during the radial deflection of buckling

is obtained from the product of Equations (28) and (31) and is given as follows:

Fw = [ sin 2 (m_x/L) ] [GoG 1 + GoG 2 + GoG3] (33)

The expression for Fw must be evaluated over the surface area of the cylindrical

shell to obtain the total work W expression given as follows:

L 27 R

w=: f
0 0

Fw ds dx I,_A_

Substitution of Equation (33) into (34) will result in the following expression:

L

W=f
0

2_R

f [sin 2 (m_tx/L)] [GoG 1 +GoG 2 +GoG 3] dsdx (35)
0

Integrating Equation(35)with respect to x will give the following:

2_R

W = (L/2) f [ GoG 1 + GoG 2 + GoG 3 ] ds (36)
0

Evaluation of the integrals of the products GoG 1, GoG2, and GoG 3 will give

the fol lowing:

21tR 2_R

(L/2) f G G 1 ds=M B1 A A (L,/2) f
0 o a n n r 0

cos (s/R) cos (ns/R) cos (rs/R) ds

=MaBlnAnAr(_RL/4), when r=n_+l (37a)

2_R 2_R

(L/2) f GoG 2 ds =Ma B2n An Ar (L/2) f
0 0

sin (s/R) (ns/R) cos (rs/R) ds

=Ma B2nAnAr (_RL/4), when r=n- 1 ; (37b)

and =-M B2nA A (_RL/4), when r=n+la n r
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21tR 2_R

(L/2) J" OoG 3 ds = B3n A A (L/2) jr
0 n r 0

cos (ns/R) cos (rs/R) ds

= B3n A A 0tRL/4) when r =n (37c)n r

All other combinations of r and n values not specified by the r-n condition

equations will cause the integrals to vanish. Substitution of the specified values for r and

n into Equations (37a), (37b) and (37c); evaluation of these equations; and separation of

terms will result in the following general expression for the total work during the buckling

due to the radial deflection:

6 ,, 5

W =(=RL/4) [ Z Az +M Z A +B I -B 2 +B2,n+1) }n = 1 n B3n a n An+l (B1 ,n n+l ,n
n--1 t

(38)

where the values of n are as specified on the summation symbols.

Equation (38) is minimized with respect to the arbitrary displacement parameters

A when n again has the interger values 1 through 6. This procedure will result in then

following system of algebraic equations:

8A18W- 0: A1B'11 +_2MaB'12 = 0 (39)

AI M m8W _ 0: a_ +A2 + Ma-
BA2 21 B22 _3 B23 = 0 (40)

8W M a - M a -

= 0 : _C2 B32 +A3B33 +'_4 B34 = 0 (41)

8W Ma- - Ma- = 0 (42)
= 0: ,K3 B43 +A 4B44+A 5 B45

8W Ma- - AMa - = 0 (43)
8A% = 0: ,K4 B54 +A 5B55 + B56

aW M a - -

8A6 - 0: _C5 B65 +A 6B66 = 0 (44)
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where:

I B = 2B3n; n = 1 to 6 (45)
n,n

I - - = (B +B 1 + ); n = 1to5Bn,n+l = Bn+l,n l,n ,n+l - B2,n B2,n+l

The coefficients of the A terms in Equations (39) through (44), when writtenn

in determinate form, result in the following expression:

(5)

B'11 M - 0a B12

m m

M a B21 B22 M a B23

m

0 M a B32 B33

0 0 M a B43

0 0 0

0 0 0

0 0 0

M a B34

B44

M a B54

0 0 0 0

0 0

M 0a B45

B55 M a B56

M a B65 B66

and Equations (39) through (44) can be written in the following matrix form:

(46)

[D] [A] = 0 (47)
n

Since the arbitrary displacement parameters, An, are real; the determinant, (D), must vanish

for all values of A . Therefore, evaluation of the determinant (D) which results in a sixthn

degree equation in Ma, will give the critical resultant moment, Ma cr, of the circular cylin-

der for the particular values of Po

(24). The desired value of M cr
a

istic equation:

T + T 1 M 2o a

and P used in the evaluation of the h-constants in Equationa

is the lowest, positive, real root of the following character-

+ T2M4a + T3M6a : 0 (48)

I
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where:

T
0

T
1

[ B"I) B-'22B33 B'44 B'-55 B%6 ]

....

- [ B'I 1 B22 B33 B44 B56

+ B'11 B-22 B-55 B'66 -2B34

+ "B33B44 B55 B66 _ 22 ]

-2 -2 - -2 -2
T2 -- [Bll B22 B34 B56 + B11 B44 B23 B56 + _

_ _-_4_,_-_ - - -+ B56 + B33B66B122-2B45 +

2 -2 -2
T3 = - [B'12 B34 B56]

X. CONCLUSIONS

-- u --2

+ B!1 B22 B33 B66 B45

+ Bll B44 B55 B'66-2B23

•2 -2
11 B66 B23B45

B'55 B66 B22 -2B34 I

(49)

The general instability of an orthotropic circular cylinder subjected to an axial

load, end moment, and uniform radial pressure has been analyzed by a technique paralleling

the technique used by Bodner (1). The analysis has been successfully programmed, see Ap-

pendix C, and the program has been run with arbitrary data. The results obtained with the

arbitrary data could only be visually checked and were within the range of expected results.

The program has not been used in conjunction with experimental investigations.

XI. RECOMMENDATIONS

It is assumed that this investigation of orthotropic shells will be continued on

an experimental basis, and that the experiments will attempt to verify and/or modify the

exlsting analysis as well as refine and modify the computer program that has been written.

The recommendations that are stated are intended as a guide for the experimental investigators.

The deflection expression, Equation 26, should be extended to a minimum of 12 circum-

ferential deflection terms and possibly extended to 16 or 24 terms should computer capacity

allow this extension. This extension will improve the accuracy of the analysis.

The axial term of the deflection expression, the sine term, should be extended to

contain a cosine term, that is, sin (re,x/L) +cos (mTrx/L) . The axial term will then

allow a variation of end conditions, which become significant in the short cylinder range

!
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and possibly the intermediate cylinder range. This modified axial term can also be used to

induce deflections due to the pre-buckling stresses.

An additional term can be added to the deflection expression to account for the

initial imperfections of the cylinder.

The discarded roots of the characteristic equation should be mathematically in-

vestigated, and the meaning of the imaginary roots should be ascertained.

The sensitivity of the program should be checked for each of the dependant

variables, geometric and loading. Each modification of the program should be checked for

the possible changes in sensitivity that can be expected.

A normalization of the final program is recommended which will allow a compari-

son with other information existing in the field.

Since stability of orthotropic shells is both a general and local stability problem

the program can be extended to include the local stability problem by evaluating existing

investigations in this field.

Results obtained by other investigators can be checked with the program to deter-

mine whether or not the program is valid.

I
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SYMBOL TABLE

A
e

A
S

A 1, A 2, etc.

a 1, a 2, etc.

aPl, aP2, etc.

Bln, B2n, B3n

n,n n,n+l

b 1 , b 2, etc.

bPl, bP2, etc.

c 1 , c 2, etc.

cPl, cP2, etc.

D 1, D 2, D3

(5)

d80, d60, etc.

E

Ex, Es

E -28

APPENDIX A

- Cross-sectional area of the shell.

- Surface area of the middle surface of the shell.

- Arbitrary displacement parameters for the assumed deflection

expression.

- Constants for the stability equilibrium equation defined by
Equation 20a.

- Constants for the stability equilibrium equation defined by
Equation 20.

- Generalized constants defined by Equation 30.

- Generalized constants for the stability determinant defined by
Equation 45.

- Constants for the stability equilibrium equation defined by
Equation 20a.

- Constants for the stability equilibrium equation defined by
Equation 20.

- Constants for the stability equilibrium equation defined by

Equation 20a.

- Constants for the stability equilibrium equation defined by
Equation 20.

- Bending rigidities for the axial, circumferential, and shear strains

respectively.

- Stability determinant.

- Constants for the Donnell differential equation defined by

Equation 25.

- Modulus of elasticity for the isotropic case.

- Moduli of elasticity averaged over the axial and circumferential
directions, respectively.
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exx ' xsess, e

e60, e42, etc.

e40, e22, e04

ef40, ef22

eg40, eg22, eg20

eg21

f6o'f42'$4

G

G O

G 1, G 2, G 3

g60' g42' etc.

g41' g23' g21

h

h
eq

h80, h60, etc.

hc60, hc42, etc.
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- Axial, circumferential, and shear strains, respectively,

occurring during the buckling process, defined by Equation 1.

- Constants for the Donnell differential equation defined by
Equation 25.

- Constants for the Donnell differential equation defined by
Equation 25.

- Constants for the Donnell differential equation defined by
Equation 25.

- Constants for the Donnell differential equation defined by
Equation 25.

- Constants for the Donnell differential equation defined by
Equation 25.

- Residual force per unit area remaining in the shell as a result of the

assumed deflection expression.

- Constants for the Donnell differential equation defined by
Equation 25.

- Average shear modulus, where G = E/(1 + is )

- Constant defined by Equation 32.

- Constants for the residual force equation defined by Equation 29.

- Constants for the Donnell differential equation defined by

Equation 25.

- Constants for the Donnell differential equation defined by Equation 25.

- Shell wall thickness.

- Shell wall thickness modified for the orthotropic case.

- Constants for the Donnell differential equation defined by

Equation 24.

- Constants for the Donnell differential equation defined by Equation 24.

I
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hs41, hs23, etc.

k

L

M
a

M
O

m

Nxx' Nss' Nxs

P
a

P
O

Po

TrR,/L

Q

R

S

To, T 1 , etc.

U

U

V

V
S

V
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- Constants for the Donnell differential equation defined by
Equation 24.

- Non-dimensional integer constant.

- Length of cylindrical shell.

- Modified end moment defined by Ma = Mo/_R2

- Applied end moment.

- Number of buckling modes in the axial direction.

- Axial, circumferential, and shear stress resultants in the shell

just prior to buckling defined by Equation 5.

- Modified axial load defined by Pa = Po/ _ R2"

- Applied axial load.

- Applied uniform radial pressure.

- Circular shell radius to length ratio.

- Linear differential operator defined by Equation 21.

- Radius of circular shell.

- Circular shell radius to thickness ratio.

- Circumferential coordinate of circular shell.

- Constants for the characteristic equation defined by Equation 49.

- Change in strain energy during buckling.

- Axial deformation of an element of the circular shell.

- Change in potential energy during buckling.

- Volume of circular shell wall.

- Circumferential deformation of an element of the circular shell.
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W

W

Z

aI• a2 • a3

8

e

X

P

Pxs

a
xx

a
xx

' _sx

a
, ass • xs

m

(7
• O'SS • XS
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- Total work due to the residual force during buckling.

- Radial deformation of an element of the circular shell.

- Axial coordinate of the circular shell.

- Radial coordinate of the circular shell.

- Extensional stiffnesses for the axial• circumferential• and shear

strains respectively.

- Variational symbol.

- Coordinate angle corresponding to the circumferential coordinate•
where e = s/R.

- Constant defined by Equation 30.

- Poison's ratio for the isotropic case.

-Poison's ratios from the x to s and the s to x directions,

respectively.

-Axial• circumferential, and shear stresses, respectively,
occurring during the buckling process.

- Axial, circumferential, and shear stresses, respectively, in the

circular shell just prior to buckling.

I
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APPENDIX C

COMPUTE R PROGRAM

The solution of the problem being investigated here requires that an n-th degree

polynomial in M be solved for the lowest, positive, real or zero root. The degree ofa

this polynomial, the characteristic equation of the stability determinant, Equation 48, is

equal to the maximum value used for n in the deflection expression, Equation 26a. The

applied end moment can be pius or minus and still have the _me stability condition, there-

fore the characteristic equation can be considered as a polynomial in M 2 and the roots of
a

the characteristic equation are determined by the cubic formula. The values of M are
2 a

then obtained by taking the square root of the M value.
a

In the development of this problem, the total change in energy expression,

Equation 11, is manipulated by certain mathematical operations. After each manipulation

a new set of constants is obtained. These new constants are defined in terms of previously

defined constants, etc., and finally all constants are defined in terms of the extensional

stiffnesses and bending rigidities, Equation 3, and other input variables. Therefore, the

problem that the computer program must solve is an evaluation of successive sets of constants,

and the solution of the characteristic equation for the desired root. A computer program

type-out is shown in Appendix D,and this program is written in Fortran II for an IBM 1620

computer.

In the investigation of an arthotropic shell, the a 1, a2, D 1 and D 2 values,

Equation 3, are calculated for a particular orthotropic shell using heq. These values are

then rationed to the respective isotropic shell values, a and D, which are obtained by

using h values. These ratios are used as input variables in the form: A1A, A2A, D1D,

and D2D; where A1A = a 1/a , etc. Similarly the input values of L and h appear in

the computer program as ratios in the form _R/L and R/h, respectively.

In any stability problem it is necessary that the sensitivity of any or all variables

be investigated, and that a study of the output variable M for certain ranges of the inputa

variables be made. An iterative process that incruments the input variables between certain

desired limits permits these studies. All input variables can be iterated with the exception

ofE, Pxs, Psx and R.

I
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The iterative process requires three input values for each of the following input

terms: A1A, A2A, D1D, D2D, R/h, _R/L, Po' Po' k and m. These values are: the

initial value, also the minimum# the maximum value; and the increment by which the input

variable varies between the initial and maximum values.

The program output is M vs. P . A sample output format is shown in Appen-
a o

dix E. This sample output format is for arbitrary values of the input variables.

When a constant value, non-incrumented value, of an input variable is used in

a paflicu!ar comp_ter run, the initial value and maximum value must be the same, and the

incrument should be an arbitrary positive number.

An increase in the number of terms in the deflection expression will require a

change in the root solving portion of the program, since the cubic formula will no longer

provide a valid solution to the characteristic equation.

The symbols used in the computer program are self-explanatory except symbols

Bll, B12, and B13 which are the b 1' b2and b3 constants of Equation 20a,respectively.

A partial list of definitions and computer program symbols is given in Appendix F.

Certain constants used in the text of this paper do not appear in the computer

program. These constants have been incorporated into succeeding constants with the in-

tent of conserving computer storage.

The program must be precompiled with format, since an overload condition

exists on a 40K bit storage when the program is precompiled without format.
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APPENDIX D

COMPUTER PROGRAM TYPE-OUT

C PROGRAM FOR THE STABILITY ANALYSIS OF AN ORTHOTROPIC CIRCULAR
C SHELL WITH AXIAL LOAD, END MOMENT, AND RADIAL PRESSURE,

C THIS PROGRAM IS WRITTEN IN FORTRAN II FOR AN IBM 1620 COMPUTER.

C INPUT DATA (5 CARDS} - ALL DATA IN 8 DIGIT FIELDS
I00 READ5OI,E,VXS,VSX,R

C VALUES FOR PRESSURE AND AXIAL LOAD

READ501,APO,POINC,POMAX,ABGPO,BG_OI,BGPOM

C INITIAL VALUES (MINIMUM}

READSO1,AROH,ARPL,AAIA,AA2A,ADID.AD2D,AFK,AEM

C INCRUMENT VALUES

READSO1,ROHIN,RPLIN,AIAIN,A2AIN,DIDIN,D2DIN,EKINC,EMINC

C MAXIMUM VALUES

READ501,ROHMX,RPLMX,A1AMX,A2AMX,D1DMX,D2DMX,EKMAX,EMMAX

DIMENSION V(8), UI8},SI6,8),B1(8),B2(8},B3(8),X(61,Y(5)

C REPEATING CONSTANTS

PI=3.141593
FI=I.

F2=2,

F3=3,

F4=4,

PAINC=BGPOI/(PI*R*R}

PAMAX=BGPOM/(PI*R**2)

INITIALIZING STATEMENT

FK=AEK

INITIALIZING STATEMENT

10 EM=AEM

U(1)=F1/R

DQ 222 N=2,8

222 U(N)=U(1)_*N

DO 225 I=1,6

DO 225 J=1,8
D=I

225 S(I,J)=D**J

INITIALIZING STATEMENT

15 RPL=A_PL

OUTPUT STATEMENT

PUNCHSIO,E,VXS,VSX,R,EK,EM

25 EL=R_PI/RPL
VII)=EM*PI*R/EL

DO 223 N=2,8

223 V(N)=V(1)**N

QOH=APC)H

C OUTPUT STATEMENT

PUNCH512,RPL

C INITIALIZING STATEMEN

35 D2D=AD2D

C OUTPUT STATEMENT

PUNCHSIS,RC)H

C INITIALIZING STATE'AEN

45 DID=AD1D

C INITIALIZING STATEMEN

I
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A2A=AA2A

INITIALIZING STATEMENT

AIA=AAIA

INITIALIZING STATEMENT

PO=APO

OUTPUT STATEMENT

PUNCH511,AIA,A2A.DID.D2D

H=R/ROH

CONSTANTS FOR EQULIBRIUM EQUATIONS

AX=FI-VXS*VSX

QI=F1/(E*H*(VSX/(F2*AX)-F1/(F4*(FI-VXS))))

AI=-F2*QI*AIA*E*H/(F2*AX)

A2=AI*A2A/AIA

A3=-F2*O1*E_H/(8,*(F1+VXS))

A5=-F4*(QI/R)*E*H**F3/(96,*(FI+VXS))

Aa=A3+A5/(F2*R)

A6=A2_VXS/(-F2*R)

A7=Q1/R

A9=-F2*A6/VXS

B11=F2*R*DID*E_H*_F3/(24,*AX)

B12=BI1*D2D/DID

BI3=E*H*_F3_(F2*DID*VSX/AX+FI/(FI+VSXi)_R/12,

B4=-A2*R/QI+B12*EK*EK/R**F4

85=-R*R

R6:B12*F2*EKI(R*R)

B?=-(R**F2)/F2

B8=B11*F2_VSX*EK/(R*R)

CI=VSX*A2A_E*H/(F2_AX)

C =-E*H**F3/(24,*(FI+VXS))

C4=F2*CI/VXS

CONSTANTS FOR DONNELL EQUATION (EQUA. 24 AND 25)

HSO=AI*A4*B11

Q2=AI*A2+A3*A4-FI

H62=AI*(AS*C2+A4_B13)+BII*Q2

H44=A3_(A5_C2+A2*BII)+BI3*Q2+AI*A4*B12

H26=A2*A3*B13+B12*Q2

HO8=A2_A3*B12

E60=A1*(A7*B11+A4*BT)

HC60=-R*AI*A4

D42=AI*(A5*C4+A9_C2+A4*B6)+A5*CI+A6*C2+B8*Q2

E42=AI_(A5*R+QI*C2+A4*B5+A?*B13)+A3*AT_BII+BT*Q2

HC42:-R*Q2

D24=A3*(A5*C4+A9*C2+A2*B8)+B6*Q2

E24=A3*(A5*R+QI_C2+AT*BI3+A2*B7)+BS*Q2+AI*AT*B12

HC24=-R*A2*A3

EO6=AB_(A2*B5+AT*B12)

H_I:_2"02

HS23=F4*A2*A3

D_0=Ag*IA6*CI+AI*B4)

D22=CI*(A2*A6+A9)+C4*(AI*Ag+A6)+R4*02

E22=A1*(A9*R+QI*C4+A7*B6)+A6*R+Q1*CI+A3*A7*B8

EB22=A]*(QI*R+ATWB5)+A3*AT*B7

DO4=A3*(A9*C4+A2*B4)

EO4=A3*(AO*R+QI*C4+A7*B6)

I
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EBO4=A3*(QI*R+A7*B5)

H20=POWATWIA6*CI+AIwB4)

OUTPUT STATEMENT

PUNCH51k,PO

INITIALIZING STATEMENT

BIGPO=ABGPO

PA=BIGPO/(PI_RWR)

H60=AI*A4_(B8+BT*PA)+E60*PO

H42=D42+E42*PO+B7_Q2_PA

H24=D24+E24*PO+A2*A3*B7*PA

HO6=A2*A3*B6+EO6_PO

H40=D40+AIWA7wPO*(BS+B7*(PO+PA})

HC40=Q2/R-RWAI*A7wPO

H22=D22+PO*(E22+EB22*PO+A3*A7*BT_PA}

HC22=A3W(AT*R*PO+6.*A2/R)

HO4=DO4+POW(EO4+EBO4_PO}

HS21=F2*A3*(AT*PO-F2*A2/R**F2)

HC20=A3*(PO*AT/R-A2/R*wF3)

HO2=A3WAT*B4wPO

STABILITY DETERMINANT CONSTANTS (EQUA.45)

DO 227 N=I,6

Bl(N)=-HC60*V(6)wU(3)-HC42_V(4)_U(3)*S(N,2)-HC24*V(2)wU(3)wS(Nt4)

BI(N =B1(N}+HC40_V(4)*U(1)+HC22*V(2)wU(1)wS(N,2)-HC20*V(2)WR

82(N =HS21*V(2)eS(N,1)-HS41*V(4)_U(2)_S(N,1)-HS23*V(2)*U(2)*S(N,3)

B3(N =HBO*V(8)*U(5}+H62*V(6)*U(5)*S(N,2)+H44*V(a)wU(5)WS(N,4)

B3(N =B3(N)+H26*V(2)wU(5}wS(N,6)+HO8*U(5)*S(N,8)-H60.V(6)*U(3}

B3(N =B3(N)+H42*V(4)wU(3)WS(N,2)-H24*V(2)wu(3)*S(N,4}

B3(N =B3(N)-HO6*U(3)*S(N,6)+H40*V(4)/R+H22*V(2)_S(N,2)/R

B3(N =83(N}+HO4*S(N,4}/R-HO2_R_S(N,2)-H20*V(2)*R

CONSTANTS FOR CHARACTERISTIC EQUATION (EOUA. 49_

X(N)=F2*B3(N)

DO 228 N=I,5

Y(N)=(B1(N)+B1(N+I)-B2(N)+B2(N+1))_*2

TO=X(1)wx(2)*X(3)*X(4)*X(5)*X(6)

TI=-X(1)*X(2)_(X(3)*X(4}*Y(5)+X(3)*X(6)_Y(4}+X(5)wX(6)wY(3))

TI=TI-X(4)*X(5)wX(6)*(X(1)*Y(2)+X(3)*Y(1))

T2=X(1)*(Y(5)*(X(2)*Y(3)+X(4)*Y(2))+X(6)*Y(2)_Y(4))

T2=T2+Y(1)w(X(3)*(X(4)*Y(5)+X(6I*Y(4))+X(5)*X(6)_Y(3))

T3=-Y(1)wY(B)wY(5)

SOLUTION OF CHARACTERISTIC EQUATION (EQUA. 48)

Q=(F3WTI/T3-(T2/Tg)**2 }/F3

T=(F2*(T2/T3)**9 -9.*TI*T2/T3**2 +27.*TO/T3)/27.

Z=T**2 /F4+Q_*3 /27,

IFIZ)250,260,270

BIGA=(Z**,5-T/F2)**(FI/F3)

BIGB=(-IZ**.5)-T/F2)*W(F1/F3)
EMA2=BIGA+BIGB

IF(EMA2)390,400,400

BIGA=(-T/F2)_e{FI/F3)
EMA21=F2*BIGA

EMA22=-BIGA

IF(EMA2])261,262,262

EMA2=EMA22

GO TO 400

I
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262

250

251

258

282

259

284

280

281

252

285

253

254

255

286

257

256

40O

390

C

3':)I

201

202

203

204

2O5

206

2O7

208

2O9
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EMA2=EMA21

GO TO 400

THETA=ATANF((-(Q_*3 /27.)-(T*'2

Q3=F2*(-Q/F3)**.5

EMA21=Q3*COSFITHETA/F3}

EMA22=Q3*COSF(THETA/F3+F2*PI/F3)

EMA23:Q3*COSF(THETA/F3+F4*PI/F3)

IF(EMA21)251_252,252

IF(EMA22)258,259,259

IF(EMA23)390,282,282

EMA2=EMA23

GO TO 400

IF(EMA22-EMA23)280t280t284

IF(EMA23)280_281t281

EMA2=EMA22

GO TO 400

EMA2=EMA23

GO TO 400

IF(EMA21-EMA22)2539253t285

IF(EMA22)253t254t254

EEMA2=EMA21

GO TO 255
EEMA2=EMA22

IF(EEMA2-EMA23)256,256,2B6

IF(EMA23)256,257_257
EMA2=EMA23

GO TO 400

EMA2:EFMA2
EMA=EMA2**,5

EMO=EMA*PI*R_*F2

PUNCH513_BIGPOtEMO

GO TO 391

PUNCH5169BIGPO

BEGIN CYCLING OF INPUT DATA
PA=PA+PAINC

BIGPO=BIGPO+BGPOI

IF(PA-PAMAX)6019601,201
PO=PO+POINC

IF(PO-POMAX)6OO_6OOt202

A1A=A1A+AIAIN

IF(AIA-A1AMX)60t609203

A2A=A2A+A2AIN
IF(A2A-A2AMX)55t55_204

D1D=D1D+D]DIN

IF(D1D-D1DMX)5OtSO,205
D2D=D2D+D2DIN

IF(D2D-D2DMX)45,45t206
ROH=ROH+ROHIN

IF(ROH-ROHMX)35,35,_v,
RPL=RPL+RPLIN

IF(RPL-RPLMX)25,25,208
EM=EM+EMINC

IF(EM-EMMAX)15,15,209

EK=EK+EKINC

/F4))**.5/(-TIF2))

I
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i01
501
510
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IF(EK-EKMAX)10_10_210
OUTPUT STATEMENT

PRINT 101

FORMAT(13HLOAD NEW DATA)

FORMAT(BF8.0)

FORMAT(2OHE_VXS_VSXgRADtK_M = *E8,2_2F5,2tF8,2_2F5,1)

FORMAT(&X22HA1/AtA2/A_D1/DtD2/D = 9F6,293F7°2)
FORMAT(2X2OHPI X RAD / LENGTH = _F6,3)

FORMAT(lOXIIHBIGPO_MO = _Eg.2_3XE13.6)

FORMAT(SX11HPRESSURE = tFS.2)

FORMAT(4XI8HRAD / THICKNESS = _F9.2)

FORMAT(!OX11HBIGPOtMO = _Eg.2t6X4HIMAG)
GO TO 100

END
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APPENDIX E

COMPUTER PROGRAM OUTPUT FORMAT

INPUT DATA FOR THE

30000000.3 .3 10.

15. 15. 30. 0.

1200, 6. I, 1.

400. 2. i. I.

1600° 8. I. I.

FOLLOWING OUT-PUT

5000.

I.

I.

i.

FORMAT

I0000o

1.

I.

l,

1,

1°

OUT-PUT FORMAT

E,VXS,VSX,RAD,K,M : .30E+08 .30

Pl X RAD / LENGTH : 6,000

RAD / THICKNESS = 1200.00

AI/AgA2/AgD1/DgD2/D = 1.00

Pl

RAD

PRESSURE : 15.00

BIGPO,MO : ,00E-99

BIGPO,MO = 5.00E+03

BIGPO,MO : 1.00E+04

PRESSURE = 30.00

BIGPO,MO : ,00E-99

BIGPO,MO : 5.00E+03

RIGPOgMO = I°00E+04

/ THICKNESS : 1600,00

AIIA,A21A,DI/D,D2/D :

PRESSURE = 15.00

BIGPO_MO : °00E-99

BIGPO,MO : 5.00E+03

BIGPOtMO : I.OOE+04

PRESSURE = 30.00

BIGPO,MO : .00E-99
BIGPO,MO = 5,00E+03

BIGPO,MO = 1.00E+04

X RAD / LENGTH = 8,000

RAD / THICKNESS = 1200.00

AIIA,A21A_DIlD,D2/_ :

PRESSURE : 15,00

BIGPO,MO = .00E-99

BIGPO,MO : 5.00E+03

BIGPO_MO = I.OOE+O_

PRESSURE : 30,00

BIGPO,MO : .00E-99

BIGPO,MO = 5.00E+03

RIGPO,MO = 1.00E+04

.30 10,00

1,00 1.00

4,145080E+08

4,145072E+08

4.145060E+08

4.145147E+08

4,145134E+08

4.145121E+08

1.0 I,0

1,00

I.00 1.00 1.00 I.00

Io

I°

I°

3.108863E+08

3.108854E+08

3.108838E+08

3.108928E+08
3.108916E+08
3.108903E+08

1.00 1.00 1.00

2.344654E+08

2.3_4708E+08

2,344760E+08

2,344727E+08

2.344779E+08

2.344833E+08

1,00
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RAD I .THICKNESS = 1600o00

AIlA,A2/A,D1/D,D2/D = 1.00

PRESSURE = 15,00

BIGPOgMO = .00E-99

81GPO,MO = 5.00E+03

RIGPO,MO = I,OOE+04

RRESSURE = 30,00

BIGRO,MO : .00E-99

BIGPO,MO = 5,00E+03

BIGPO,MO = 1,00E+04

1,00 1,00 1.00

1,758522E+08

1,758575E+08

1,758626E+08

1,758593E+08

1,758646E+08

1.758698E+08
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APPENDIX F

I PARTIAL LIST OF DEFINITIONS

OF COMPUTER PROGRAM SYMBOLS

I E

i VXS
VSX

Modulus of elasticity for isotropic case.

Polssoin's ratio for the x to s direction.

Poisson's ratio for the s to x direction.

Radius of the shell.

where a =
I R

A1A = al/a ; Eh/2 (1 - P xs H sx)

I A2A = a 2/'a

I DID = DI/D ;

I_D = D2/D

I ROH : R,/h

RPL = _ R,/L

I EK : k

= m

= Po radial pressure

= P axial load
0

: Pa : Po/- _ Rl"

= M end moment

o R2
: Mo/-
- initial

- initial

EM

I Po
BIGPO

I PA
EMO

I EMA

AAIA

I AA2A

- initial

- initial

ADID

I AD2D

- initial

- initial

AROH

I ARPL

AEK - initial

I

where D : Eh3/24(1 - H xsHsx)

value of A1A (minimum)

value of A2A (minimum)

value of D1D (minimum)

value of D2D (minimum)

value of ROH (minimum)

value of RPL (minimum)

value of EK (minimum)

I

I
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AEM

APO

ABGPO

AIAMX

A2AMX

DIDMX

D2DMX

ROHMX

RPLMX

EKMAX

EMMAX

POMAX

BGPOM

AIAIN

A2AIN

DIDIN

D2DIN

ROHIN

RPLIN

EKINC

EMINC

POINC

BGPOI

EL

H
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- initial value of EM (minimum)

- initial value of PO (minimum)

- initial value of BIGPO (minimum)

- final value of A1A (maximum)

- final value of A2A (maximum)

- final value of D1D (maximum)

- final value of D2D (maximum)

- r'inal value of ROH (maximum)

- final value of RPL (maximum)

- final value of EK (maximum)

- final value of EM (maximum)

- final value of PO (maximum)

- final value of BIGPO (maximum)

- incrument of A1A

- incrument of A2A

- incrument of D1D

- incrument of D2D

- incrument of ROH

- incrument of RPL

- incrument of EK

- incrument of EM

- incrument of PO

- incrument of BIGPO

Length of shell

Thickness of the shell

I


